dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorGilmour, S. G.
dc.creatorTrinca, L. A.
dc.date2014-05-20T15:22:40Z
dc.date2016-10-25T17:56:24Z
dc.date2014-05-20T15:22:40Z
dc.date2016-10-25T17:56:24Z
dc.date2003-04-01
dc.date.accessioned2017-04-05T23:37:57Z
dc.date.available2017-04-05T23:37:57Z
dc.identifierJournal of Quality Technology. Milwaukee: Amer Soc Quality Control-asqc, v. 35, n. 2, p. 184-193, 2003.
dc.identifier0022-4065
dc.identifierhttp://hdl.handle.net/11449/33609
dc.identifierhttp://acervodigital.unesp.br/handle/11449/33609
dc.identifierWOS:000182176400005
dc.identifierhttp://asq.org/qic/display-item/index.html?item=19154
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/877694
dc.descriptionFactorial experiments are widely used in industry to investigate the effects of process factors on quality response variables. Many food processes, for example, are not only subject to variation between days, but also between different times of the day. Removing this variation using blocking factors leads to row-column designs. In this paper, an algorithm is described for constructing factorial row-column designs when the factors are quantitative, and the data are to be analysed by fitting a polynomial model. The row-column designs are constructed using an iterative interchange search, where interchanges that result in an improvement in the weighted mean of the efficiency factors corresponding to the parameters of interest are accepted. Some examples illustrating the performance of the algorithm are given.
dc.languageeng
dc.publisherAmer Soc Quality Control-asqc
dc.relationJournal of Quality Technology
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectcentral composite design
dc.subjectoptimal design
dc.subjectsecond order model
dc.titleRow-column response surface designs
dc.typeOtro


Este ítem pertenece a la siguiente institución