dc.contributor | Donoso Meisel, Yezid Enrique | |
dc.contributor | Lozano Garzón, Carlos Andrés | |
dc.contributor | Montoya Orozco, Germán Adolfo | |
dc.creator | Pinto Rojas, Yuri Andrea | |
dc.date.accessioned | 2023-07-14T14:45:19Z | |
dc.date.accessioned | 2023-09-07T02:17:09Z | |
dc.date.available | 2023-07-14T14:45:19Z | |
dc.date.available | 2023-09-07T02:17:09Z | |
dc.date.created | 2023-07-14T14:45:19Z | |
dc.date.issued | 2023-05-25 | |
dc.identifier | http://hdl.handle.net/1992/68449 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8729133 | |
dc.description.abstract | Las Infraestructuras Críticas (ICs) desempeñan un papel fundamental en el soporte y funcionamiento de servicios esenciales como el sistema de transporte, las telecomunicaciones y el tratamiento de agua, entre otros. No obstante, la conexión de estas infraestructuras a nuevas tecnologías ha aumentado la superficie de ataque y por lo tanto, su protección se ha convertido en una prioridad en términos de seguridad nacional. Los ciberataques se han vuelto más sofisticados, lo que ha permitido a los criminales evadir los sistemas de seguridad convencionales, planteando así un desafío en la detección de mencionados ataques. En este contexto, las técnicas de aprendizaje automático (ML, por sus siglas en inglés) ofrecen la capacidad de abordar amenazas de mayor alcance y diversidad. Sin embargo, la detección de ataques día cero y los recursos necesarios para implementar soluciones basadas en ML en entornos reales representan preocupaciones para los operadores de las ICs. Este trabajo tiene como objetivo aplicar técnicas de aprendizaje automático no supervisado para la detección de anomalías en ICs. | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Seguridad de la Información | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Sistemas y Computación | |
dc.relation | Adepu, S., Junejo, K. N., Mathur, A., & Goh, J. (n.d.). A Dataset to Support Research in the Design of Secure Water Treatment Systems. https://www.researchgate.net/publication/305809559 | |
dc.relation | Al-Hawawreh, M., Sitnikova, E., & Aboutorab, N. (2022). X-IIoTID: A Connectivity-Agnostic and Device-Agnostic Intrusion Data Set for Industrial Internet of Things. IEEE Internet of Things Journal, 9(5), 3962-3977. https://doi.org/10.1109/JIOT.2021.3102056 | |
dc.relation | Almalawi, A., Fahad, A., Tari, Z., Khan, A. I., Alzahrani, N., Bakhsh, S. T., Alassafi, M. O., Alshdadi, A., & Qaiyum, S. (2020). Add-on anomaly threshold technique for improving unsupervised intrusion detection on SCADA data. Electronics (Switzerland), 9(6), 1-20. https://doi.org/10.3390/electronics9061017 | |
dc.relation | Alsaedi, A., Moustafa, N., Tari, Z., Mahmood, A., & Adna N Anwar. (2020). TON-IoT telemetry dataset: A new generation dataset of IoT and IIoT for data-driven intrusion detection systems. IEEE Access, 8, 165130-165150. https://doi.org/10.1109/ACCESS.2020.3022862 | |
dc.relation | Arora, P., Kaur, B., & Teixeira, M. A. (2021). Evaluation of Machine Learning Algorithms Used on Attacks Detection in Industrial Control Systems. In Journal of The Institution of Engineers (India): Series B (Vol. 102, Issue 3, pp. 605-616). Springer. https://doi.org/10.1007/s40031-021-00563-z | |
dc.relation | Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3), 1-58. | |
dc.relation | Das, S. K., Kant, K., & Zhang, N. (2012). Handbook on Securing Cyber-Physical Critical Infrastructure. Morgan Kaufmann. https://ezproxy.uniandes.edu.co/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=453871&lang=es&site=eds-live&scope=site | |
dc.relation | Dawson, M., Bacius, R., Gouveia, L. B., & Vassilakos, A. (2021). Understanding the Challenge of Cybersecurity in Critical Infrastructure Sectors. Land Forces Academy Review, 26(1), 69-75. https://doi.org/10.2478/raft-2021-0011 | |
dc.relation | Ferrag, M. A., Friha, O., Hamouda, D., Maglaras, L., & Janicke, H. (2022). Edge-IIoTset: A New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications for Centralized and Federated Learning. IEEE | |
dc.relation | Gallais, C., & Filiol, E. (2017). Critical Infrastructure¿: Where Do We Stand Today? A Comprehensive and Comparative Study of the Definitions of a Critical Infrastructure. Journal of Information Warfare, 16(1), 64. https://www.jstor.org/stable/26502877 | |
dc.relation | Guerra-Manzanares, A., Medina-Galindo, J., Bahsi, H., & Nõmm, S. (2020). MedBIoT: Generation of an IoT botnet dataset in a medium-sized IoT network. ICISSP 2020 - Proceedings of the 6th International Conference on Information Systems Security and Privacy, 207-218 | |
dc.relation | Haider, W., Hu, J., Slay, J., Turnbull, B. P., & Xie, Y. (2017). Generating realistic intrusion detection system dataset based on fuzzy qualitative modeling. Journal of Network and Computer Applications, 87, 185-192. https://doi.org/10.1016/j.jnca.2017.03.018 | |
dc.relation | Herrera, L. C., & Maennel, O. (2019). A comprehensive instrument for identifying critical information infrastructure services. In International Journal of Critical Infrastructure Protection (Vol. 25, pp. 50-61). Elsevier B.V. https://doi.org/10.1016/j.ijcip.2019.02.001 | |
dc.relation | Hindy, H., Bayne, E., Bures, M., Atkinson, R., Tachtatzis, C., & Bellekens, X. (2020). Machine Learning Based IoT Intrusion Detection System: An MQTT Case Study (MQTT-IoT-IDS2020 Dataset). http://arxiv.org/abs/2006.15340 | |
dc.relation | iTrust Center for Research in Cyber Security. (n.d.). Secure Water Treatment (SWaT) Testbed. | |
dc.relation | Kruszka, L., Klósak, M., & Muzolf, P. (2019). Critical Infrastructure Protection Best Practices and Innovative Methods of Protection. NATO Science for Peace and Security, Sub-Series D, Information and Communication Security., 52. | |
dc.relation | Kure, H. I., Islam, S., & Mouratidis, H. (2022). An integrated cyber security risk management framework and risk predication for the critical infrastructure protection. Neural Computing and Applications. https://doi.org/10.1007/s00521-022-06959-2 | |
dc.relation | Malatji, M., Marnewick, A. L., & Von Solms, S. (2022). Cybersecurity capabilities for critical infrastructure resilience. Information and Computer Security, 30(2), 255-279. https://doi.org/10.1108/ICS-06-2021-0091 | |
dc.relation | Markopoulou, D., & Papakonstantinou, V. (2021). The regulatory framework for the protection of critical infrastructures against cyberthreats: Identifying shortcomings and addressing future challenges: The case of the health sector in particular. Computer Law & Security Review: The International Journal of Technology Law and Practice, 41. https://doi.org/10.1016/j.clsr.2020.105502 | |
dc.relation | Mattioli, Rossella., Levy-Bencheton, C., & European Union. European Network and Information Security Agency. (2014). Methodologies for the identification of critical information infrastructure assets and services: guidelines for charting electronic data communication networks. In Enisa (Issue December). | |
dc.relation | Nguyen, T. T., & Reddi, V. J. (2021). Deep Reinforcement Learning for Cyber Security. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3121870 | |
dc.relation | Ptracu, P. (2021). Emerging Technologies and National Security: The Impact of IoT in Critical Infrastructures Protection and Defence Sector. Land Forces Academy Review, 26(4), 423-429. https://doi.org/10.2478/raft-2021-0055 | |
dc.relation | Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research methodology for information systems research. Journal of Management Information Systems, 24(3), 45-77. https://doi.org/10.2753/MIS0742-1222240302 | |
dc.relation | Polat, H., Türkolu, M., Polat, O., & engür, A. (2022). A novel approach for accurate detection of the DDoS attacks in SDN-based SCADA systems based on deep recurrent neural networks. Expert Systems with Applications, 197. https://doi.org/10.1016/j.eswa.2022.116748 | |
dc.relation | Ridwan, M. A., Radzi, N. A. M., Abdullah, F., & Jalil, Y. E. (2021). Applications of Machine Learning in Networking: A Survey of Current Issues and Future Challenges. IEEE Access, 9, 52523-52556. https://doi.org/10.1109/ACCESS.2021.3069210 | |
dc.relation | Sarhan, M., Layeghy, S., & Portmann, M. (2022). Towards a Standard Feature Set for Network Intrusion Detection System Datasets. Mobile Networks and Applications, 27(1), 357-370. https://doi.org/10.1007/s11036-021-01843-0 | |
dc.relation | Selim, G. E. I., Hemdan, E. E. D., Shehata, A. M., & El-Fishawy, N. A. (2021). Anomaly events classification and detection system in critical industrial internet of things infrastructure using machine learning algorithms. Multimedia Tools and Applications, 80(8), 12619-12640. https://doi.org/10.1007/s11042-020-10354-1 | |
dc.relation | Shaukat, K., Luo, S., Varadharajan, V., Hameed, I. A., & Xu, M. (2020). A Survey on Machine Learning Techniques for Cyber Security in the Last Decade. IEEE Access, 8, 222310-222354. https://doi.org/10.1109/ACCESS.2020.3041951 | |
dc.relation | Shin, H.-K., Lee, W., Yun, J.-H., & Kim, H. (n.d.). HAI 1.0: HIL-based Augmented ICS Security Dataset. | |
dc.relation | Szydlo, T. (2022). Online Anomaly Detection Based On Reservoir Sampling and LOF for IoT devices. http://arxiv.org/abs/2206.14265 | |
dc.relation | Tushkanova, O., Levshun, D., Branitskiy, A., Fedorchenko, E., Novikova, E., & Kotenko, I. (2023). Detection of Cyberattacks and Anomalies in Cyber-Physical Systems: Approaches, Data Sources, Evaluation. Algorithms, 16(2). https://doi.org/10.3390/a16020085 | |
dc.relation | U.S. Homeland Security Office. (2003, December 17). Homeland Security Presidential Directive 7: Critical Infrastructure Identification, Prioritization, and Protection. Https://Www.Cisa.Gov/Homeland-Security-Presidential-Directive-7. | |
dc.relation | Witten Ian, Eibe Frank, & Hell Mark A. (2011). Data Mining: Practical Machine Learning Tools and Technique, Third Edition. SIGSOFT Softw. Eng. Notes, 36(5), 51-52. https://doi.org/10.1145/2020976.2021004 | |
dc.relation | Xu, Z., Kakde, D., & Chaudhuri, A. (2019). Automatic Hyperparameter Tuning Method for Local Outlier Factor, with Applications to Anomaly Detection. https://doi.org/10.1109/BigData47090.2019.9006151 | |
dc.relation | Yurekten, O., & Demirci, M. (2021). Citadel: Cyber threat intelligence assisted defense system for software-defined networks. Computer Networks, 191. https://doi.org/10.1016/j.comnet.2021.108013 | |
dc.relation | Zeadally, S., Adi, E., Baig, Z., & Khan, I. A. (2020). Harnessing artificial intelligence capabilities to improve cybersecurity. IEEE Access, 8, 23817-23837. https://doi.org/10.1109/ACCESS.2020.2968045 | |
dc.relation | Zoppi, T., Gharib, M., Atif, M., & Bondavalli, A. (2021). Meta-learning to improve unsupervised intrusion detection in cyber-physical systems. ACM Transactions on Cyber-Physical Systems, 5(4). https://doi.org/10.1145/3467470 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Aplicación de técnicas de aprendizaje automático (no supervisado) para la detección de anomalías en infraestructuras críticas cibernéticas | |
dc.type | Trabajo de grado - Maestría | |