dc.contributor | Tabares Pozos, Alejandra | |
dc.contributor | Santos Vega, Mauricio | |
dc.contributor | Cordovez Álvarez, Juan Manuel | |
dc.contributor | Valencia Arboleda, Carlos Felipe | |
dc.contributor | BIOMAC | |
dc.creator | Otero Acosta, Julian David | |
dc.date.accessioned | 2023-06-20T20:01:49Z | |
dc.date.accessioned | 2023-09-07T02:11:13Z | |
dc.date.available | 2023-06-20T20:01:49Z | |
dc.date.available | 2023-09-07T02:11:13Z | |
dc.date.created | 2023-06-20T20:01:49Z | |
dc.date.issued | 2023-06-01 | |
dc.identifier | http://hdl.handle.net/1992/67711 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8729032 | |
dc.description.abstract | El Dengue (DENV) es una enfermedad vectorial transmitida principalmente por los mosquitos del género Aedes. En Colombia el dengue tiene un comportamiento endémico-epidémico, con brotes cada 3 años apro-ximadamente. Entender las dinámicas del dengue resulta esencial para poder plantear estrategias de control que permitan evitar que se sigan presentando brotes epidémicos. En este estudio se planteó la correlación del dengue con variables socioeconómicas, demográficas y climáticas en varias escalas de agregación espa-cial a lo largo de 6 años de estudio. Se filtraron variables demográficas utilizando Regresiones con Pesos Geográficos (GWR) y las variables que mostraron tener una alta influencia y baja colinealidad se incluyeron en un modelo espaciotemporal por medio de Aproximación Laplaciana Anidada (INLA), con la intención de estimar la significancia e influencia de estas sobre la incidencia del dengue en Ibagué, Colombia. A su vez, se construyó un modelo basado en agentes (ABM) y se incluyeron las variables socioeconómicas y demográfi-cas previamente seleccionadas para tener una simulación más robusta del comportamiento del dengue respec-to a la población de mosquitos y a la conducta humana, para identificar cuales personas podrían ser más pro-pensas a adoptar estrategias de control e intervenciones individuales y el impacto de estas a escala local. Se encontró que la mayoría de las variables socioeconómicas no son significativas en grandes escalas de agru-pación, pero si en bajas escalas de agregación. Adicionalmente, logramos captar el efecto del DENV en Iba-gué en una simulación e incluir intervenciones, mostrando que la limpieza de contenedores de agua estanca-da reduce el conteo de casos y desplaza los brotes de las estaciones de altas temperaturas. Los insecticidas tienen un efecto similar, pero adicionalmente eliminan los picos elevados. Los mosquiteros no mostraron un cambio notorio en los casos de dengue cuando eran aplicados a porcentajes bajos de la población. | |
dc.description.abstract | Dengue virus (DENV) is a vectorial disease transmitted mainly by mosquitoes from the Aedes genus. In Colombia, dengue has an endemic-epidemic behavior, with significant outbreaks approximately every three years. Therefore, understanding the dynamics of the virus is essential to propose control strategies to avoid outbreaks. We proposed the correlation between DENV and socioeconomic, demographic, and environmental variables on different levels of spatial aggregation over a 6-year study. We filtered out variables using Geographically Weighted Regression (GWR), from which influential predictors were later included in a spatiotemporal model through an Integrated Nested Laplace Approximation model (INLA), to estimate their significance and influence on DENV incidence in Ibagué, Colombia. Additionally, we built an Agent-Based Model (ABM) including the socioeconomic and demographic variables seeking robustness in the simulations of DENV, integrating mosquito populations and human behavior, which allowed us to simulate which people would have a higher tendency to adopt individual interventions and the impact those have at a local scale. We found that most socioeconomic and demographic variables are non-significant at big scales of spatial aggregation but are still relevant on smaller scales. We were also able to capture the effect of DENV in Ibagué on a simulated model and include interventions, which showed that cleaning still-water containers lowers cases count and displaces outbreaks from high temperature seasons. Insecticides have a similar effect at lowering cases, but also remove high peaks. Mosquito nets don¿t display a big change in DENV cases when applied to small percentages of the population. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Industrial | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Industrial | |
dc.relation | I. Kurane, ¿Dengue hemorrhagic fever with special emphasis on immunopathogenesis,¿ Comparative Immunology, Microbiology and Infectious Diseases, vol. 30, no. 5¿6, pp. 329¿340, Sep. 2007, doi: 10.1016/j.cimid.2007.05.010. | |
dc.relation | S. Pooransingh, S. Teelucksingh, and I. Di-alsingh, ¿Dengue Deaths: Associated Factors and Length of Hospital Stay,¿ Advances in Preventive Medicine, vol. 2016, pp. 1¿4, 2016, doi: 10.1155/2016/6807674. | |
dc.relation | ¿Dengue and severe dengue.¿ https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (ac-cessed Oct. 28, 2022). | |
dc.relation | M. M. O. Silva et al., ¿Accuracy of Dengue Reporting by National Surveillance System, Brazil,¿ Emerg. Infect. Dis., vol. 22, no. 2, pp. 336¿339, Feb. 2016, doi: 10.3201/eid2202.150495. | |
dc.relation | W. P. Vargas, H. Kawa, P. C. Sabroza, V. B. Soares, N. A. Honório, and A. S. de Almeida, ¿Association among house infestation index, dengue incidence, and sociodemographic indi-cators: surveillance using geographic infor-mation system,¿ BMC Public Health, vol. 15, no. 1, p. 746, Dec. 2015, doi: 10.1186/s12889-015-2097-3. | |
dc.relation | N. H. Rose et al., ¿Climate and Urbanization Drive Mosquito Preference for Humans,¿ Cur-rent Biology, vol. 30, no. 18, pp. 3570-3579.e6, Sep. 2020, doi: 10.1016/j.cub.2020.06.092. | |
dc.relation | S. A. Lee, C. I. Jarvis, W. J. Edmunds, T. Economou, and R. Lowe, ¿Spatial connectivi-ty in mosquito-borne disease models: a sys-tematic review of methods and assumptions,¿ J. R. Soc. Interface., vol. 18, no. 178, p. 20210096, May 2021, doi: 10.1098/rsif.2021.0096. | |
dc.relation | M. A. Kuddus, E. Tynan, and E. McBryde, ¿Urbanization: a problem for the rich and the poor?,¿ Public Health Rev, vol. 41, no. 1, p. 1, Dec. 2020, doi: 10.1186/s40985-019-0116-0. | |
dc.relation | N. Vatanpour, A. M. Malvandi, H. Hedayati Talouki, P. Gattinoni, and L. Scesi, ¿Impact of rapid urbanization on the surface water¿s qual-ity: a long-term environmental and physico-chemical investigation of Tajan river, Iran (2007¿2017),¿ Environ Sci Pollut Res, vol. 27, no. 8, pp. 8439¿8450, Mar. 2020, doi: 10.1007/s11356-019-07477-w. | |
dc.relation | V. Romeo-Aznar, L. Picinini Freitas, O. Gon-çalves Cruz, A. A. King, and M. Pascual, ¿Fi-ne-scale heterogeneity in population density predicts wave dynamics in dengue epidemics,¿ Nat Commun, vol. 13, no. 1, p. 996, Dec. 2022, doi: 10.1038/s41467-022-28231-w. | |
dc.relation | ¿PAHO/WHO Data - Dengue cases.¿ https://www3.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html (ac-cessed Oct. 28, 2022). | |
dc.relation | A. J. R. Reyes, D. G. Ruge, and L. C. P. Herre-ra, ¿INFORME DE EVENTO DENGUE, COLOMBIA, 2019,¿ no. 04, p. 24, 2019. | |
dc.relation | J. C. Padilla, D. P. Rojas, and R. Sáenz Gómez, Dengue en Colombia: epidemiología de la re-emergencia a la hiperendemia, Primera edi-ción en español. Erscheinungsort nicht ermit-telbar: Verlag nicht ermittelbar, 2012. | |
dc.relation | D. Guha-Sapir and B. Schimmer, ¿Dengue fe-ver: new paradigms for a changing epidemiol-ogy,¿ Emerg Themes Epidemiol, vol. 2, no. 1, p. 1, 2005, doi: 10.1186/1742-7622-2-1. | |
dc.relation | P. Reiter et al., ¿Texas Lifestyle Limits Trans-mission of Dengue Virus,¿ Emerg. Infect. Dis., vol. 9, no. 1, pp. 86¿89, Jan. 2003, doi: 10.3201/eid0901.020220. | |
dc.relation | E. R. da S. Queiroz and R. de A. Medronho, ¿Spatial analysis of the incidence of Dengue, Zika and Chikungunya and socioeconomic de-terminants in the city of Rio de Janeiro, Bra-zil,¿ Epidemiol. Infect., vol. 149, p. e188, 2021, doi: 10.1017/S0950268821001801. | |
dc.relation | ¿Alcaldía Municipal de Ibagué - Ibagué Vi-bra.¿ https://ibague.gov.co/portal/seccion/contenido/index.php?type=3&cnt=53 (accessed Oct. 28, 2022). | |
dc.relation | M. C. Carrasquilla et al., ¿Entomological char-acterization of Aedes mosquitoes and arbo-virus detection in Ibagué, a Colombian city with co-circulation of Zika, dengue and chikungunya viruses,¿ Parasites Vectors, vol. 14, no. 1, p. 446, Dec. 2021, doi: 10.1186/s13071-021-04908-x. | |
dc.relation | M. O. Faruk, S. N. Jannat, and Md. S. Rahman, ¿Impact of environmental factors on the spread of dengue fever in Sri Lanka,¿ Int. J. Environ. Sci. Technol., vol. 19, no. 11, pp. 10637¿10648, Nov. 2022, doi: 10.1007/s13762-021-03905-y. | |
dc.relation | K. E. Pickett, ¿Multilevel analyses of neigh-bourhood socioeconomic context and health outcomes: a critical review,¿ Journal of Epi-demiology & Community Health, vol. 55, no. 2, pp. 111¿122, Feb. 2001, doi: 10.1136/jech.55.2.111. | |
dc.relation | A. V. Diez Roux, ¿Investigating Neighbor-hood and Area Effects on Health,¿ Am J Pub-lic Health, vol. 91, no. 11, pp. 1783¿1789, Nov. 2001, doi: 10.2105/AJPH.91.11.1783. | |
dc.relation | L. A. Waller and C. A. Gotway, Applied spa-tial statistics for public health data. in Wiley series in probability and statistics. Hoboken, N.J: John Wiley & Sons, 2004. | |
dc.relation | B. Chaix, J. Merlo, D. Evans, C. Leal, and S. Havard, ¿Neighbourhoods in eco-epidemiologic research: Delimiting personal exposure areas. A response to Riva, Gauvin, Apparicio and Brodeur,¿ Social Science & Medicine, vol. 69, no. 9, pp. 1306¿1310, Nov. 2009, doi: 10.1016/j.socscimed.2009.07.018. | |
dc.relation | A. V. Diez Roux and C. Mair, ¿Neighborhoods and health: Neighborhoods and health,¿ An-nals of the New York Academy of Sciences, vol. 1186, no. 1, pp. 125¿145, Feb. 2010, doi: 10.1111/j.1749-6632.2009.05333.x. | |
dc.relation | I. G. N. M. Jaya and H. Folmer, ¿Bayesian spa-tiotemporal mapping of relative dengue dis-ease risk in Bandung, Indonesia,¿ J Geogr Syst, vol. 22, no. 1, pp. 105¿142, Jan. 2020, doi: 10.1007/s10109-019-00311-4. | |
dc.relation | C. Rotejanaprasert, N. Ekapirat, D. Areechok-chai, and R. J. Maude, ¿Bayesian spatiotem-poral modeling with sliding windows to cor-rect reporting delays for real-time dengue sur-veillance in Thailand,¿ Int J Health Geogr, vol. 19, no. 1, p. 4, Dec. 2020, doi: 10.1186/s12942-020-00199-0. | |
dc.relation | A. Sani, B. Abapihi, M. Mukhsar, and K. Ka-dir, ¿Relative risk analysis of dengue cases us-ing convolution extended into spatio-temporal model,¿ Journal of Applied Statistics, vol. 42, no. 11, pp. 2509¿2519, Nov. 2015, doi: 10.1080/02664763.2015.1043863. | |
dc.relation | O. Telle et al., ¿Social and environmental risk factors for dengue in Delhi city: A retrospec-tive study,¿ PLoS Negl Trop Dis, vol. 15, no. 2, p. e0009024, Feb. 2021, doi: 10.1371/journal.pntd.0009024. | |
dc.relation | R. Lowe et al., ¿Combined effects of hydrome-teorological hazards and urbanisation on den-gue risk in Brazil: a spatiotemporal modelling study,¿ The Lancet Planetary Health, vol. 5, no. 4, pp. e209¿e219, Apr. 2021, doi: 10.1016/S2542-5196(20)30292-8. | |
dc.relation | M. R. Desjardins, M. D. Eastin, R. Paul, I. Casas, and E. M. Delmelle, ¿Space¿Time Con-ditional Autoregressive Modeling to Estimate Neighborhood-Level Risks for Dengue Fever in Cali, Colombia,¿ The American Journal of Tropical Medicine and Hygiene, vol. 103, no. 5, pp. 2040¿2053, Nov. 2020, doi: 10.4269/ajtmh.20-0080. | |
dc.relation | C.-H. Lin and T.-H. Wen, ¿Using Geographically Weighted Regression (GWR) to Explore Spatial Varying Relationships of Immature Mosquitoes and Human Densities with the Incidence of Dengue,¿ IJERPH, vol. 8, no. 7, pp. 2798¿2815, Jul. 2011, doi: 10.3390/ijerph8072798. | |
dc.relation | H. M. Khormi and L. Kumar, ¿Modeling den-gue fever risk based on socioeconomic param-eters, nationality and age groups: GIS and re-mote sensing based case study,¿ Science of The Total Environment, vol. 409, no. 22, pp. 4713¿4719, Oct. 2011, doi: 10.1016/j.scitotenv.2011.08.028. | |
dc.relation | H. Ren, L. Zheng, Q. Li, W. Yuan, and L. Lu, ¿Exploring Determinants of Spatial Variations in the Dengue Fever Epidemic Using Geographically Weighted Regression Model: A Case Study in the Joint Guangzhou-Foshan Area, China, 2014,¿ IJERPH, vol. 14, no. 12, p. 1518, Dec. 2017, doi: 10.3390/ijerph14121518. | |
dc.relation | D. Wheeler and M. Tiefelsdorf, ¿Multicollinearity and correlation among local regression coefficients in geographically weighted regression,¿ J Geograph Syst, vol. 7, no. 2, pp. 161¿187, Jun. 2005, doi: 10.1007/s10109-005-0155-6. | |
dc.relation | Mukhsar, B. Abapihi, A. Sani, E. Cahyono, P. Adam, and F. Aini Abdullah, ¿Extended convolution model to bayesian spatio-temporal for diagnosing the DHF endemic locations,¿ Journal of Interdisciplinary Mathematics, vol. 19, no. 2, pp. 233¿244, Mar. 2016, doi: 10.1080/09720502.2015.1047591. | |
dc.relation | F. Krüger, S. Lerch, T. L. Thorarinsdottir, and T. Gneiting, ¿Predictive Inference Based on Markov Chain Monte Carlo Output,¿ 2016, doi: 10.48550/ARXIV.1608.06802. | |
dc.relation | J. S. Speagle, ¿A Conceptual Introduction to Markov Chain Monte Carlo Methods,¿ 2019, doi: 10.48550/ARXIV.1909.12313. | |
dc.relation | S. Martino and Havard Rue, ¿Implementing Approximate Bayesian Inference using Integrated Nested Laplace Approximation: a manual for the inla program.¿ Sep. 01, 2009. Accessed: Nov. 29, 2022. [Online]. Available: https://inla.r-inla-download.org/r-inla.org/doc/inla-manual/inla-manual.pdf | |
dc.relation | D. L. DeAngelis and V. Grimm, ¿Individual-based models in ecology after four decades,¿ F1000Prime Rep, vol. 6, Jun. 2014, doi: 10.12703/P6-39. | |
dc.relation | N. Gilbert, Agent-Based Models. 2455 Teller Road, Thousand Oaks California 91320: SAGE Publications, Inc., 2020. doi: 10.4135/9781506355580. | |
dc.relation | F. Miksch, B. Jahn, K. J. Espinosa, J. Chhat-wal, U. Siebert, and N. Popper, ¿Why should we apply ABM for decision analysis for infectious diseases?¿An example for dengue interventions,¿ PLoS ONE, vol. 14, no. 8, p. e0221564, Aug. 2019, doi: 10.1371/journal.pone.0221564. | |
dc.relation | S. Maneerat and E. Daudé, ¿A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas,¿ Ecological Modelling, vol. 333, pp. 66¿78, Aug. 2016, doi: 10.1016/j.ecolmodel.2016.04.012. | |
dc.relation | A. A. Gramajo, K. Laneri, and M. F. Laguna, ¿Mosquito populations and human social behavior: A spatially explicit agent-based model,¿ Phys. Rev. E, vol. 106, no. 3, p. 034405, Sep. 2022, doi: 10.1103/PhysRevE.106.034405. | |
dc.relation | L. Da Silva Rodrigues, S. G. Mamedio Oliveira, L. Fernandez Lopez, and J. S. Sichman, ¿Agent Based Simulation of the Dengue Virus Propagation,¿ in Multi-Agent-Based Simulation XX, M. Paolucci, J. S. Sichman, and H. Verhagen, Eds., in Lecture Notes in Computer Science, vol. 12025. Cham: Springer International Publishing, 2020, pp. 100¿111. doi: 10.1007/978-3-030-60843-9 8. | |
dc.relation | M. Amadi, A. Shcherbacheva, and H. Haario, ¿Agent-based modelling of complex factors impacting malaria prevalence,¿ Malar J, vol. 20, no. 1, p. 185, Dec. 2021, doi: 10.1186/s12936-021-03721-2. | |
dc.relation | L. Zhu et al., ¿Is outdoor vector control needed for malaria elimination? An individual-based modelling study,¿ Malar J, vol. 16, no. 1, p. 266, Dec. 2017, doi: 10.1186/s12936-017-1920-y. | |
dc.relation | G. Borjas, G. G. Marten, E. Fernandez, and H. Portillo, ¿Juvenile Turtles for Mosquito Control in Water Storage Tanks,¿ Journal of Medical Entomology, vol. 30, no. 5, pp. 943¿946, Sep. 1993, doi: 10.1093/jmedent/30.5.943. | |
dc.relation | H. Dieng, M. Boots, N. Tuno, Y. Tsuda, and M. Takagi, ¿A laboratory and field evaluation of Macrocyclops distinctus , Megacyclops viridis and Mesocyclops pehpeiensis as control agents of the dengue vector Aedes albopictus in a peridomestic area in Nagasaki, Japan: Control of Ae. albopictus by copepods,¿ Medical and Veterinary Entomology, vol. 16, no. 3, pp. 285¿291, Sep. 2002, doi: 10.1046/j.1365-2915.2002.00377.x. | |
dc.relation | F. Espinoza-Gomez, ¿Educational campaign versus malathion spraying for the control of Aedes aegypti in Colima, Mexico,¿ Journal of Epidemiology & Community Health, vol. 56, no. 2, pp. 148¿152, Feb. 2002, doi: 10.1136/jech.56.2.148. | |
dc.relation | T. R. Mani, N. Arunachalam, R. Rajendran, K. Satyanarayana, and A. P. Dash, ¿Efficacy of thermal fog application of deltacide, a synergized mixture of pyrethroids, against Aedes aegypti, the vector of dengue: Deltacide fog against Aedes aegypti,¿ Tropical Medicine & International Health, vol. 10, no. 12, pp. 1298¿1304, Dec. 2005, doi: 10.1111/j.1365-3156.2005.01522.x. | |
dc.relation | K. K. Ballenger-Browning and J. P. Elder, ¿Multi-modal Aedes aegypti mosquito reduction interventions and dengue fever prevention,¿ Tropical Medicine & International Health, vol. 14, no. 12, pp. 1542¿1551, Dec. 2009, doi: 10.1111/j.1365-3156.2009.02396.x. | |
dc.relation | ¿MANUAL DE USO DEL MARCO GEOESTADÍSTICO NACIONAL EN EL PROCESO ESTADÍSTICO,¿ Departamento Administrativo Nacional de Estadística, Manual, 2018. | |
dc.relation | DANE, ¿La información del DANE en la toma de decisiones regionales: Ibagué, Colombia.¿ Gobierno de Colombia, Nov. 2020. Accessed: Nov. 23, 2022. [Online]. Available: https://www.dane.gov.co/files/investigaciones/planes-departamentos-ciudades/201120-InfoDane-Ibague-Tolima.pdf | |
dc.relation | Departamento Administrativo Nacional de Estadística, Descarga MGN Marco Geoestadístico Nacional. https://geoportal.dane.gov.co/servicios/descarga-y-metadatos/descarga-mgn-marco-geoestadistico-nacional/ (accessed Nov. 23, 2022). | |
dc.relation | R. Bivand and D. Yu, spgwr: Geographically Weighted Regression. 2022. [Online]. Available: https://CRAN.R-project.org/package=spgwr | |
dc.relation | R. B. Thapa and R. C. Estoque, ¿Geographically Weighted Regression in Geospatial Analysis,¿ in Progress in Geospatial Analysis, Y. Murayama, Ed., Tokyo: Springer Japan, 2012, pp. 85¿96. doi: 10.1007/978-4-431-54000-7 6. | |
dc.relation | D. C. Wheeler and A. Páez, ¿Geographically Weighted Regression,¿ in Handbook of Applied Spatial Analysis, M. M. Fischer and A. Getis, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 461¿486. doi: 10.1007/978-3-642-03647-7 22. | |
dc.relation | R. Lowe et al., ¿Nonlinear and delayed impacts of climate on dengue risk in Barbados: A modelling study,¿ PLoS Med, vol. 15, no. 7, p. e1002613, Jul. 2018, doi: 10.1371/journal.pmed.1002613. | |
dc.relation | A. Gasparrini, ¿Distributed lag linear and non-linear models in R: the package dlnm,¿ Journal of Statistical Software, vol. 43, no. 8, pp. 1¿20, 2011, doi: 10.18637/jss.v043.i08. | |
dc.relation | D. O¿Driscoll and D. E. Ramirez, ¿Response surface designs using the generalized variance inflation factors,¿ Cogent Mathematics, vol. 2, no. 1, p. 1053728, Dec. 2015, doi: 10.1080/23311835.2015.1053728. | |
dc.relation | R. Salmerón Gómez, J. García Pérez, M. D. M. López Martín, and C. G. García, ¿Collinearity diagnostic applied in ridge estimation through the variance inflation factor,¿ Journal of Applied Statistics, vol. 43, no. 10, pp. 1831¿1849, Jul. 2016, doi: 10.1080/02664763.2015.1120712. | |
dc.relation | J. Fox and G. Monette, ¿Generalized Collinearity Diagnostics,¿ Journal of the American Statistical Association, vol. 87, no. 417, pp. 178¿183, Mar. 1992, doi: 10.1080/01621459.1992.10475190. | |
dc.relation | H. Rue, S. Martino, and N. Chopin, ¿Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations,¿ Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 71, no. 2, pp. 319¿392, Apr. 2009, doi: 10.1111/j.1467-9868.2008.00700.x. | |
dc.relation | J. Besag, J. York, and A. Molliè, ¿Bayesian image restoration, with two applications in spatial statistics,¿ Ann Inst Stat Math, vol. 43, no. 1, pp. 1¿20, Mar. 1991, doi: 10.1007/BF00116466. | |
dc.relation | V. Grimm et al., ¿A standard protocol for describing individual-based and agent-based models,¿ Ecological Modelling, vol. 198, no. 1¿2, pp. 115¿126, Sep. 2006, doi: 10.1016/j.ecolmodel.2006.04.023. | |
dc.relation | Q. A. Ten Bosch et al., ¿Contributions from the silent majority dominate dengue virus transmission,¿ PLoS Pathog, vol. 14, no. 5, p. e1006965, May 2018, doi: 10.1371/journal.ppat.1006965. | |
dc.relation | R. A. Marinho, E. B. Beserra, M. A. Bezerra-Gusmão, V. D. S. Porto, R. A. Olinda, and C. A. C. Dos Santos, ¿Effects of temperature on the life cycle, expansion, and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil,¿ Journal of Vector Ecology, vol. 41, no. 1, pp. 1¿10, Jun. 2016, doi: 10.1111/jvec.12187. | |
dc.relation | D. Goindin, C. Delannay, C. Ramdini, J. Gustave, and F. Fouque, ¿Parity and Longevity of Aedes aegypti According to Temperatures in Controlled Conditions and Consequences on Dengue Transmission Risks,¿ PLoS ONE, vol. 10, no. 8, p. e0135489, Aug. 2015, doi: 10.1371/journal.pone.0135489. | |
dc.relation | F. Rubel and K. Brugger, ¿Dynamics of infectious diseases according to climate change: the Usutu virus epidemics in Vienna,¿ in Game meat hygiene in focus, P. Paulsen, A. Bauer, M. Vodnansky, R. Winkelmayer, and F. J. M. Smulders, Eds., Wageningen: Wageningen Academic Publishers, 2011, pp. 173¿198. doi: 10.3920/978-90-8686-723-3 14. | |
dc.relation | H. M. Yang, M. L. G. Macoris, K. C. Galvani, M. T. M. Andrighetti, and D. M. V. Wanderley, ¿Assessing the effects of temperature on the population of Aedes aegypti , the vector of dengue,¿ Epidemiol. Infect., vol. 137, no. 8, pp. 1188¿1202, Aug. 2009, doi: 10.1017/S0950268809002040. | |
dc.relation | L. C. Farnesi, J. M. Brito, J. G. Linss, M. Pelajo-Machado, D. Valle, and G. L. Rezende, ¿Physiological and Morphological Aspects of Aedes aegypti Developing Larvae: Effects of the Chitin Synthesis Inhibitor Novaluron,¿ PLoS ONE, vol. 7, no. 1, p. e30363, Jan. 2012, doi: 10.1371/journal.pone.0030363. | |
dc.relation | P. Matangkasombut et al., ¿Dengue viremia kinetics in asymptomatic and symptomatic infection,¿ International Journal of Infectious Diseases, vol. 101, pp. 90¿97, Dec. 2020, doi: 10.1016/j.ijid.2020.09.1446. | |
dc.relation | G. G. Clark, R. A. Anderson, M. A. Amador, and P. Reiter, ¿Short Report: Dispersal of Aedes aegypti in an Urban Area after Blood Feeding as Demonstrated by Rubidium-Marked Eggs,¿ The American Journal of Tropical Medicine and Hygiene, vol. 52, no. 2, pp. 177¿179, Feb. 1995, doi: 10.4269/ajtmh.1995.52.177. | |
dc.relation | K. E. Haynes and A. S. Fotheringham, Gravity and Spatial Interaction Models. WVU Research Repository, 1985. [Online]. Available: https://researchrepository.wvu.edu/cgi/viewcontent.cgi?article=1010&context=rri-web-book | |
dc.relation | J. R. Roy and J.C. Thill, ¿Spatial interaction modelling,¿ Papers in Regional Science, vol. 83, no. 1, pp. 339¿361, Oct. 2003, doi: 10.1007/s10110-003-0189-4. | |
dc.relation | CDC, ¿Dengue Clinical Presentation | CDC,¿ Centers for Disease Control and Prevention, Apr. 13, 2023. https://www.cdc.gov/dengue/healthcare-providers/clinical-presentation.html (accessed Apr. 24, 2023). | |
dc.relation | O. Onwujekwe, K. Hanson, and J. Fox-Rushby, ¿Inequalities in purchase of mosquito nets and willingness to pay for insecticide-treated nets in Nigeria: Challenges for malaria control interventions,¿ Malar J, vol. 3, no. 1, p. 6, 2004, doi: 10.1186/1475-2875-3-6. | |
dc.relation | E. Chanda et al., ¿Preventing malaria transmission by indoor residual spraying in Malawi: grappling with the challenge of uncertain sustainability,¿ Malar J, vol. 14, no. 1, p. 254, Dec. 2015, doi: 10.1186/s12936-015-0759-3. | |
dc.relation | ¿. Stefopoulou, G. Balatsos, A. Petraki, S. L. LaDeau, D. Papachristos, and ¿. Michaelakis, ¿Reducing Aedes albopictus breeding sites through education: A study in urban area,¿ PLoS ONE, vol. 13, no. 11, p. e0202451, Nov. 2018, doi: 10.1371/journal.pone.0202451. | |
dc.relation | T. García-Betancourt, D. R. Higuera-Mendieta, C. González-Uribe, S. Cortés, and J. Quintero, ¿Understanding Water Storage Practices of Urban Residents of an Endemic Dengue Area in Colombia: Perceptions, Rationale and Socio-Demographic Characteristics,¿ PLoS ONE, vol. 10, no. 6, p. e0129054, Jun. 2015, doi: 10.1371/journal.pone.0129054. | |
dc.relation | D. W. Marquardt, ¿Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation,¿ Technometrics, vol. 12, no. 3, p. 591, Aug. 1970, doi: 10.2307/1267205. | |
dc.relation | V. Urrea, A. Ochoa, and O. Mesa, ¿Seasonality of Rainfall in Colombia,¿ Water Resour. Res., vol. 55, no. 5, pp. 4149¿4162, May 2019, doi: 10.1029/2018WR023316. | |
dc.relation | F. Edillo et al., ¿Temperature, season, and lati-tude influence development-related phenotypes of Philippine Aedes aegypti (Linnaeus): Implications for dengue control amidst global warming,¿ Parasites Vectors, vol. 15, no. 1, p. 74, Dec. 2022, doi: 10.1186/s13071-022-05186-x. | |
dc.relation | F. A. Diaz-Quijano, R. A. Martínez-Vega, A. J. Rodriguez-Morales, R. A. Rojas-Calero, M. L. Luna-González, and R. G. Díaz-Quijano, ¿Association between the level of education and knowledge, attitudes and practices regarding dengue in the Caribbean region of Colombia,¿ BMC Public Health, vol. 18, no. 1, p. 143, Dec. 2018, doi: 10.1186/s12889-018-5055-z. | |
dc.relation | H. B. Usman et al., ¿Effect of Health Education on Dengue Fever: A Comparison of Knowledge, Attitude, and Practices in Public and Private High School Children of Jeddah,¿ Cureus, Dec. 2018, doi: 10.7759/cureus.3809. | |
dc.relation | J. R. Egger and P. G. Coleman, ¿Age and Clinical Dengue Illness,¿ Emerg. Infect. Dis., vol. 13, no. 6, pp. 924¿927, Jun. 2007, doi: 10.3201/eid1306.070008. | |
dc.relation | M. G. Guzmán, G. Kouri, J. Bravo, L. Valdes, V. Susana, and S. B. Halstead, ¿Effect of age on outcome of secondary dengue 2 infections,¿ International Journal of Infectious Diseases, vol. 6, no. 2, pp. 118¿124, Jun. 2002, doi: 10.1016/S1201-9712(02)90072-X. | |
dc.relation | C. Ochoa-Martinez et al., ¿The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México,¿ The American Journal of Tropical Medicine and Hygiene, vol. 87, no. 5, pp. 902¿909, Nov. 2012, doi: 10.4269/ajtmh.2012.12-0244. | |
dc.relation | S. N. A. Istiqamah, A. A. Arsin, A. U. Salmah, and A. Mallongi, ¿Correlation Study between Elevation, Population Density, and Dengue Hemorrhagic Fever in Kendari City in 2014¿2018,¿ Open Access Maced J Med Sci, vol. 8, no. T2, pp. 63¿66, Jul. 2020, doi: 10.3889/oamjms.2020.5187. | |
dc.relation | W. P. Schmidt et al., ¿Population Density, Water Supply, and the Risk of Dengue Fever in Vietnam: Cohort Study and Spatial Analysis,¿ PLoS Med, vol. 8, no. 8, p. e1001082, Aug. 2011, doi: 10.1371/journal.pmed.1001082. | |
dc.relation | V. Romeo-Aznar, R. Paul, O. Telle, and M. Pascual, ¿Mosquito-borne transmission in urban landscapes: the missing link between vector abundance and human density,¿ Proc. R. Soc. B., vol. 285, no. 1884, p. 20180826, Aug. 2018, doi: 10.1098/rspb.2018.0826. | |
dc.relation | D. Getachew, H. Tekie, T. Gebre-Michael, M. Balkew, and A. Mesfin, ¿Breeding Sites of Aedes aegypti¿: Potential Dengue Vectors in Dire Dawa, East Ethiopia,¿ Interdisciplinary Perspectives on Infectious Diseases, vol. 2015, pp. 1¿8, 2015, doi: 10.1155/2015/706276. | |
dc.relation | R. K. Malla, K. K. Mandal, M. Dutta, and G. Chandra, ¿An estimation of monthly propagation of dengue vector Aedes aegypti in rainwater filled tires,¿ International Journal of Pest Management, vol. 66, no. 3, pp. 239¿242, Jul. 2020, doi: 10.1080/09670874.2019.1616130. | |
dc.relation | J. Elsinga et al., ¿Health Seeking Behaviour and Treatment Intentions of Dengue and Fever: A Household Survey of Children and Adults in Venezuela,¿ PLoS Negl Trop Dis, vol. 9, no. 12, p. e0004237, Dec. 2015, doi: 10.1371/journal.pntd.0004237. | |
dc.relation | V. Duong et al., ¿Asymptomatic humans transmit dengue virus to mosquitoes,¿ Proc. Natl. Acad. Sci. U.S.A., vol. 112, no. 47, pp. 14688¿14693, Nov. 2015, doi: 10.1073/pnas.1508114112. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Spatio-temporal characterization of dengue dynamics in Ibagué - Colombia: possible factors and interventions for its control | |
dc.type | Trabajo de grado - Maestría | |