dc.contributor | Nitescu, Bogdan | |
dc.contributor | Poveda, Esteban | |
dc.creator | Montenegro Folleco, Juan Andrés | |
dc.date.accessioned | 2023-07-04T21:32:11Z | |
dc.date.accessioned | 2023-09-07T01:07:51Z | |
dc.date.available | 2023-07-04T21:32:11Z | |
dc.date.available | 2023-09-07T01:07:51Z | |
dc.date.created | 2023-07-04T21:32:11Z | |
dc.date.issued | 2023-06-02 | |
dc.identifier | http://hdl.handle.net/1992/68094 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8728117 | |
dc.description.abstract | El marco geodinámico de Colombia se caracteriza por una interacción compleja entre tres placas tectónicas: la Sudamericana, la de Nazca y la del Caribe, junto con la interacción entre el bloque Panamá-Choco y el bloque norte de los Andes. Estas interacciones dan lugar a zonas sísmicas con una marcada agrupación, como el enjambre sísmico de Cauca, Murindo y Bucaramanga, cada una de las cuales presenta propiedades geodinámicas distintas. Consecuentemente, lograr una caracterización temprana de los eventos sísmicos asume una importancia crítica; sin embargo, el limitado número de estaciones disponibles en la región plantea un reto significativo en este esfuerzo.
En las últimas décadas se ha avanzado considerablemente en el desarrollo y la aplicación de diversas técnicas de aprendizaje automático en el campo de la sismología. Una parte importante de la investigación se ha dedicado aprovechar estos avances para facilitar la localización de terremotos utilizando una única estación. Por tal razón, el presente estudio introduce un sistema sísmico de alerta temprana conocido como E3WS, diseñado específicamente para estimar las magnitudes y localizaciones de terremotos utilizando datos de una única estación. En particular, el sistema E3WS comprende seis modelos entrenados mediante la utilización de técnicas de aprendizaje automático supervisado, concretamente los algoritmos XGBoost y LASSO. Cabe destacar que los resultados obtenidos muestran un comportamiento coherente con las investigaciones anteriores realizadas utilizando el sistema E3WS.
En este estudio se utilizó un conjunto de datos compuesto por 110 registros sísmicos comprendidos entre 2016 y 2023, obtenidos de las estaciones HEL y PAL, que son estaciones sísmicas del Servicio Geológico Colombiano ubicadas en las proximidades de los clústeres de Murindo y Cauca, respectivamente. Para evaluar la precisión de las estimaciones, se realizó una comparación entre las estimaciones derivadas del sistema E3WS y los eventos sísmicos listados en el catálogo sísmico del Servicio Geológico. Los resultados revelan que, en el caso del clúster de Murindo, los eventos sísmicos mostraron errores absolutos medios de 0.24 en la estimación de la magnitud, 12.66 km en la estimación de la distancia, 16.53 km en la estimación de la profundidad y 57.07° en la estimación del retroazimut. Sin embargo, en el caso del cluster Cauca, los errores aumentaron significativamente debido a factores asociados al sistema, resultando en errores absolutos medios de 0.34 para la magnitud, 47.14 km para la distancia, 6872 km para la profundidad y 90.34° para la estimación del retroazimut. Además, el estudio llevó a cabo una evaluación de diversos factores que contribuyeron a la amplificación de los errores en los resultados de la estimación. | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Geociencias | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Geociencias | |
dc.relation | Alhamzawi, R., & Ali, H. T. M. (2018). The Bayesian adaptive lasso regression. Mathematical biosciences, 303, 75-82. https://doi.org/10.1016/j.mbs.2018.06.004 | |
dc.relation | Allen, R. P., Gasparini, P., Kamigaichi, O., & Böse, M. (2009). The Status of Earthquake Early Warning around the World: An Introductory Overview. Seismological Research Letters, 80(5), 682-693. https://doi.org/10.1785/gssrl.80.5.682 | |
dc.relation | Alves, A. F. (2017). Stacking machine learning classifiers to identify Higgs bosons at the LHC. Journal of Instrumentation, 12(05), T05005. https://doi.org/10.1088/1748-0221/12/05/t05005 | |
dc.relation | Aoi, S., Kunugi, T., & Fujiwara, H. (2004). STRONG-MOTION SEISMOGRAPH NETWORK OPERATED BY NIED: K-NET AND KiK-net. Journal of Japan Association for Earthquake Engineering, 4(3), 65-74. https://doi.org/10.5610/jaee.4.3_65 | |
dc.relation | Barrientos, S. (2018). The Seismic Network of Chile. Seismological Research Letters, 89(2A), 467-474. https://doi.org/10.1785/0220160195 | |
dc.relation | Bergen, K. J., Johnson, P., De Hoop, M. V., & Beroza, G. C. (2019). Machine learning for data-driven discovery in solid Earth geoscience. Science, 363(6433). https://doi.org/10.1126/science.aau0323 | |
dc.relation | Bernal Olaya, Rocio & Vargas, Carlos. (2015). Earthquake, Tomographic, Seismic Reflection, and Gravity Evidence for a Shallowly Dipping Subduction Zone beneath the Caribbean Margin of Northwestern Colombia. http://dx.doi.org/10.1306/13531939M1083642. | |
dc.relation | Chandramouli, S., Dutt, S., & Das, A. (2018). Machine Learning (1st edition). Pearson Education India. | |
dc.relation | Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. ACM. https://doi.org/10.1145/2939672.2939785 | |
dc.relation | Cortés, M., & Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403(1-4), 29-58. https://doi.org/10.1016/j.tecto.2005.03.020 | |
dc.relation | Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4), 357-366. https://doi.org/10.1109/tassp.1980.1163420 | |
dc.relation | Lara, P., Fernandes, C. A., Inza, A., Mars, J., Métaxian, J., Mura, M. D., & Malfante, M. (2020). Automatic Multichannel Volcano-Seismic Classification Using Machine Learning and EMD. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1322-1331. https://doi.org/10.1109/jstars.2020.2982714 | |
dc.relation | De Mello, R. F., & Ponti, M. A. (2018). Machine Learning. En Springer eBooks. https://doi.org/10.1007/978-3-319-94989-5 | |
dc.relation | Franklin, G. F., Powell, J. D., & Emami-Naeini, A. (2010). Feedback Control of Dynamic Systems. Prentice Hall. | |
dc.relation | Gal, M. S., & Rubinfeld, D. L. (2018). Data Standardization. Social Science Research Network. https://doi.org/10.2139/ssrn.3326377 | |
dc.relation | Gao, K., Mei, G., Piccialli, F., Cuomo, S., Tu, J., & Huo, Z. (2020). Julia language in machine learning: Algorithms, applications, and open issues. Computer Science Review, 37, 100254. https://doi.org/10.1016/j.cosrev.2020.100254 | |
dc.relation | Gasparini, P., Manfredi, G., & Zschau, J. (2007). Earthquake Early Warning Systems. En Springer eBooks. https://doi.org/10.1007/978-3-540-72241-0 | |
dc.relation | Goldstein, P. A., & Dodge, D. (1999). Fast and accurate depth and source mechanism estimation using P-waveform modeling: A tool for special event analysis, event screening, and regional calibration. Geophysical Research Letters, 26(16), 2569-2572. https://doi.org/10.1029/1999gl900579 | |
dc.relation | Gutscher, M., Malavieille, J., Lallemand, S., & Collot, J. (1999). Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth and Planetary Science Letters, 168(3-4), 255-270. https://doi.org/10.1016/s0012-821x(99)00060-6 | |
dc.relation | Havskov, J., & Alguacil, G. (2016). Correction for Instrument Response. En Springer eBooks (pp. 197-230). https://doi.org/10.1007/978-3-319-21314-9_6 | |
dc.relation | Havskov, J., & Alguacil, G. (2016b). Correction for Instrument Response. En Springer eBooks (pp. 197-230). https://doi.org/10.1007/978-3-319-21314-9_6 | |
dc.relation | Idárraga-García, J., Kendall, J., & Vargas, C. (2016). Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry Geophysics Geosystems, 17(9), 3655-3673. https://doi.org/10.1002/2016gc006323 | |
dc.relation | Igel, H. (2017). Computational Seismology: A Practical Introduction. Oxford University Press, USA. | |
dc.relation | Jung, A. (2022). Machine Learning. En Machine Learning: Foundations, Methodologies, and Applications. Springer Nature. https://doi.org/10.1007/978-981-16-8193-6 | |
dc.relation | Kschischang, F. (2015). The hilbert transform. University of Toronto | |
dc.relation | Lara, P., Bletery, Q., Ampuero, J., & Inza, A. (2023). Earthquake Early Warning using 3 seconds of records on a single station. Authorea (Authorea). https://doi.org/10.22541/essoar.167751595.54607499/v1 | |
dc.relation | Li, Z., Meier, M., Hauksson, E., Zhan, Z., & Andrews, J. E. (2018). Machine Learning Seismic Wave Discrimination: Application to Earthquake Early Warning. Geophysical Research Letters, 45(10), 4773-4779. https://doi.org/10.1029/2018gl077870 | |
dc.relation | Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic Earthquake Location in 3D and Layered Models. En Modern approaches in geophysics (pp. 101-134). Springer Nature (Netherlands). https://doi.org/10.1007/978-94-015-9536-0_5 | |
dc.relation | Ma, S. (2010). Focal Depth Determination for Moderate and Small Earthquakes by Modeling Regional Depth Phases sPg, sPmP, and sPn. Bulletin of the Seismological Society of America, 100(3), 1073-1088. https://doi.org/10.1785/0120090103 | |
dc.relation | Macfarlane, A. G. J., & Karcanias, N. (1976). Poles and zeros of linear multivariable systems: a survey of the algebraic, geometric and complex-variable theory. International Journal of Control, 24(1), 33-74. https://doi.org/10.1080/00207177608932805 | |
dc.relation | Malfante, M., Mura, M. D., Métaxian, J., Mars, J., Macedo, O., & Inza, A. (2018). Machine Learning for Volcano-Seismic Signals: Challenges and Perspectives. IEEE Signal Processing Magazine, 35(2), 20-30. https://doi.org/10.1109/msp.2017.2779166 | |
dc.relation | Mo, H. Y., Sun, H., Liu, J., & Wei, S. (2019). Developing window behavior models for residential buildings using XGBoost algorithm. Energy and Buildings, 205, 109564. https://doi.org/10.1016/j.enbuild.2019.109564 | |
dc.relation | Boada, M. A., Poveda, E., & Tary, J. B. (2022). Lithospheric and Slab Configurations From Receiver Function Imaging in Northwestern South America, Colombia. Journal Of Geophysical Research: Solid Earth, 127(12). https://doi.org/10.1029/2022jb024475 | |
dc.relation | Mousavi, S. M., & Beroza, G. C. (2020). A Machine Learning Approach for Earthquake Magnitude Estimation. Geophysical Research Letters, 47(1). https://doi.org/10.1029/2019gl085976 | |
dc.relation | Mousavi, S. M., & Beroza, G. C. (2020b). Bayesian-Deep-Learning Estimation of Earthquake Location From Single-Station Observations. IEEE Transactions on Geoscience and Remote Sensing, 58(11), 8211-8224. https://doi.org/10.1109/tgrs.2020.2988770 | |
dc.relation | Mousavi, S. M., Sheng, Y. P., Zhu, W., & Beroza, G. C. (2019). STanford EArthquake Dataset (STEAD): A Global Data Set of Seismic Signals for AI. IEEE Access, 7, 179464-179476. https://doi.org/10.1109/access.2019.2947848 | |
dc.relation | Nuñez, Alejandra. (2016). Análisis del desempeño de la Red Sísmica del Noroeste de México para la evaluación y el control de calidad de los datos generados. http://dx.doi.org/10.13140/RG.2.2.13969.63847 | |
dc.relation | Massachusetts Institute of Technology Department of Mechanical Engineering. (s.f). Understanding poles and zeros | |
dc.relation | Pan, B. (2018). Application of XGBoost algorithm in hourly PM2.5 concentration prediction. IOP Conference Series: Earth and Environmental Science, 113, 012127. https://doi.org/10.1088/1755-1315/113/1/012127 | |
dc.relation | Parhi, K. K., & Ayinala, M. (2014). Low-Complexity Welch Power Spectral Density Computation. IEEE Transactions on Circuits and Systems I-regular Papers, 61(1), 172-182. https://doi.org/10.1109/tcsi.2013.2264711 | |
dc.relation | Park, T., & Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Association, 103(482), 681-686. https://doi.org/10.1198/016214508000000337 | |
dc.relation | Garcia, P. J., Vargas, C., & J, H. M. (2007). GEOMETRIC MODEL OF THE NAZCA PLATE SUBDUCTION IN SOUTHWEST COLOMBIA. Earth Sciences Research Journal, 11(2), 124-134. http://www.scielo.org.co/pdf/esrj/v11n2/v11n2a03.pdf | |
dc.relation | Pennington, W. D. (1981). Subduction of the Eastern Panama Basin and seismotectonics of northwestern South America. Journal of Geophysical Research, 86(B11), 10753-10770. https://doi.org/10.1029/jb086ib11p10753 | |
dc.relation | Perol, T., Gharbi, M., & Denolle, M. A. (2018). Convolutional neural network for earthquake detection and location. Science Advances, 4(2). https://doi.org/10.1126/sciadv.1700578 | |
dc.relation | Poveda, S. (2022). REANALISIS SISMOTECTONICO DEL CLUSTER SISMICO DE MURINDO. Universidad de los Andes | |
dc.relation | Prabhu, K. (2013). Window Functions and Their Applications in Signal Processing. Taylor and Francis Group. https://doi.org/10.1201/9781315216386 | |
dc.relation | Ranstam, J., & Cook, J. (2018). LASSO regression. British Journal of Surgery, 105(10), 1348. https://doi.org/10.1002/bjs.10895 | |
dc.relation | Scherbaum, F. (2001). RC Filter. En Modern approaches in geophysics (pp. 12-38). Springer Nature (Netherlands). https://doi.org/10.1007/978-1-4020-6861-4_2 | |
dc.relation | Sella, G. F., Dixon, T. H., & Mao, A. (2002). REVEL: A model for Recent plate velocities from space geodesy. Journal of Geophysical Research, 107(B4), ETG 11-30. https://doi.org/10.1029/2000jb000033 | |
dc.relation | Shearer, P. M. (2009). Introduction to seismology. Choice Reviews Online, 37(08), 37-4521. https://doi.org/10.5860/choice.37-4521 | |
dc.relation | Houston, H. (2003). An Introduction to Seismology, Earthquakes, and Earth Structure An Introduction to Seismology, Earthquakes, and Earth Structure. Blackwell publishing. https://doi.org/10.1063/1.1629009 | |
dc.relation | Suárez, G. (2022). The Seismic Early Warning System of Mexico (SASMEX): A Retrospective View and Future Challenges. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.827236 | |
dc.relation | Tary, J., Boada, M. A., Vargas, C., Monoga, A. M. M., Naranjo-Hernandez, D. F., & Quiroga, D. E. (2022). Source characteristics of the Mw 6 Mutatá earthquake, Murindo seismic cluster, northwestern Colombia. Journal of South American Earth Sciences, 115, 103728. https://doi.org/10.1016/j.jsames.2022.103728 | |
dc.relation | Taylor, R. L. (1990). Interpretation of the Correlation Coefficient: A Basic Review. Journal of Diagnostic Medical Sonography, 6(1), 35-39. https://doi.org/10.1177/875647939000600106 | |
dc.relation | Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the royal statistical society series b-methodological, 58(1), 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x | |
dc.relation | Ulrich, T. (2006). Envelope Calculation from the Hilbert Transform. | |
dc.relation | Vargas, C. (2019). Subduction geometries in northwestern South America. doi: 10.32685/pub.esp.38.2019.11. | |
dc.relation | Vargas, C., Pujades, L., & Montes, L. A. O. (2007). Seismic structure of South-Central Andes of Colombia by tomographic inversion. Geofisica Internacional, 46(2), 117-127. https://doi.org/10.22201/igeof.00167169p.2007.46.2.21 | |
dc.relation | Vargas, C., & Mann, P. (2013). Tearing and Breaking Off of Subducted Slabs as the Result of Collision of the Panama Arc-Indenter with Northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025-2046. https://doi.org/10.1785/0120120328 | |
dc.relation | Veloza, G., Styron, R. H., Taylor, M. D., & Mora, A. (2012). Open-source archive of active faults for northwest South America. GSA today, 22(10), 4-10. https://doi.org/10.1130/gsat-g156a.1 | |
dc.relation | Wei, F., & Li, M. (2003). Cepstrum analysis of seismic source characteristics. Acta Seismologica Sinica, 16(1), 50-58. https://doi.org/10.1007/s11589-003-0006-9 | |
dc.relation | Wielandt, E. (2012). Seismic Sensors and their Calibration. Streckeisen Seismic Instrumentation, 1-51. https://doi.org/10.2312/gfz.nmsop-2_ch5 | |
dc.relation | Wu, C. (s. f.). hypo71 Tutorial. http://geophysics.eas.gatech.edu/people/cwu/teaching/hypo71/hypo71.html | |
dc.relation | Yu, S., & Ma, J. (2021). Deep Learning for Geophysics: Current and Future Trends. Reviews of Geophysics, 59(3). https://doi.org/10.1029/2021rg000742 | |
dc.relation | Zarifi, Z., Havskov, J., & Hanyga, A. (2007). An insight into the Bucaramanga nest. Tectonophysics, 443(1-2), 93-105. https://doi.org/10.1016/j.tecto.2007.06.004 | |
dc.relation | Zhao, P., & Yu, B. (2006). On Model Selection Consistency of Lasso. Journal of Machine Learning Research, 7(90), 2541-2563. https://statistics.berkeley.edu/sites/default/files/tech-reports/702.pdf | |
dc.relation | Zhou, Z. (2022). Machine Learning. Springer. | |
dc.rights | Attribution-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Estimación de características de un sismo por medio de técnicas de aprendizaje automático a partir de una sola estación | |
dc.type | Trabajo de grado - Pregrado | |