dc.contributor | Forero Romero, Jaime Ernesto | |
dc.contributor | Villaescusa Navarro, Francisco | |
dc.contributor | Sabogal Martínez, Beatriz Eugenia | |
dc.contributor | Grupo de investigación de Astrofísica | |
dc.creator | Suárez Pérez, John Fredy | |
dc.date.accessioned | 2023-08-01T16:28:42Z | |
dc.date.accessioned | 2023-09-06T23:40:15Z | |
dc.date.available | 2023-08-01T16:28:42Z | |
dc.date.available | 2023-09-06T23:40:15Z | |
dc.date.created | 2023-08-01T16:28:42Z | |
dc.date.issued | 2023-07-11 | |
dc.identifier | http://hdl.handle.net/1992/68996 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8726726 | |
dc.description.abstract | Artificial Intelligence (AI) has shown promise in advancing fundamental physics knowledge, from particle physics to cosmology. The significant advancements in AI over the last decade have been increasingly applied to solve problems in astronomy, primarily motivated by the large amount of data generated by state-of-the-art facilities.
In this thesis, we explore to what extent AI techniques can be useful in tackling problems in observational cosmology. We focused our efforts on applying data mining, machine learning, and deep learning to handle and analyze the data coming from the ongoing observations of the Dark Energy Spectroscopic Instrument (DESI).
DESI is an advanced spectroscopic experiment that has been operational since 2020 and aims to build the most detailed 3D map of the Universe. DESI is a massive undertaking, and over the course of five years, it will measure approximately 40 million spectra from stars, galaxies, and quasars, generating an enormous amount of data that can benefit from advanced AI techniques for analysis and interpretation.
In this thesis, we successfully achieved using AI techniques in three important aspects for DESI:
1) assessing the quality of the data generated by the experiment, 2) describing the cosmic web pattern on the DESI maps, and 3) predicting the redshift observed by DESI from the features observed in imaging data. These three achievements will help improve our understanding of the Universe's evolution and the nature of dark energy, not only with the data coming from DESI but also from future facilities and experiments. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Doctorado en Ciencias - Física | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Física | |
dc.relation | Abbott, B. P., R. Abbott, T. D. Abbott et collab. 2016, ¿Observation of gravitational waves from
a binary black hole merger¿, Physical Review Letters, vol. 116, 6, doi:10.1103/PhysRevLett.116.
061102, ISSN 10797114. URL http://arxiv.org/abs/1602.03837http://dx.doi.org/10.
1103/PhysRevLett.116.061102. | |
dc.relation | Ade, P. A., N. Aghanim, M. Arnaud et collab. 2016, ¿Planck 2015 results: XIII. Cosmological
parameters¿, Astron. Astrophys., vol. 594, doi:10.1051/0004-6361/201525830, p. A13, ISSN
14320746. URL http://www.aanda.org/10.1051/0004-6361/201525830. | |
dc.relation | Aghanim, N., Y. Akrami, M. Ashdown et collab. 2020, ¿Planck 2018 results: V. CMB power
spectra and likelihoods¿, Astron. Astrophys., vol. 641, doi:10.1051/0004-6361/201936386,
ISSN 14320746. URL https://arxiv.org/abs/1907.12875. | |
dc.relation | Aikio, J. et P. Mahonen. 1998, ¿A Simple Void-searching Algorithm¿, The Astrophysical Journal,
vol. 497, 2, doi:10.1086/305509, p. 534¿540, ISSN 0004-637X. URL https://iopscience.
iop.org/article/10.1086/305509. | |
dc.relation | Akiyama, K., A. Alberdi, W. Alef et collab. 2019, ¿First M87 Event Horizon Telescope
Results. I. The Shadow of the Supermassive Black Hole¿, Astrophys. J., vol. 875, 1,
doi:10.3847/2041-8213/ab0ec7, p. L1, ISSN 20418213. URL http://arxiv.org/abs/1906.
11238http://dx.doi.org/10.3847/2041-8213/ab0ec7. | |
dc.relation | Albareti, F. D., C. A. Prieto, A. Almeida et collab. 2017, ¿The 13th Data Release of the Sloan
Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby
Galaxies at Apache Point Observatory¿, The Astrophysical Journal Supplement Series, vol. 233,
doi:10.3847/1538-4365/aa8992, p. 25, ISSN 1538-4365. URL https://iopscience.iop.org/
article/10.3847/1538-4365/aa8992. | |
dc.relation | Albrecht, A., G. Bernstein, R. Cahn et collab. 2006, ¿Report of the dark energy task force¿, doi:
10.48550/ARXIV.ASTRO-PH/0609591. URL https://arxiv.org/abs/astro-ph/0609591. | |
dc.relation | Allam, T. et J. D. McEwen. 2021, ¿Paying Attention to Astronomical Transients: Photometric Classification with the Time-Series Transformer¿, doi:10.48550/arxiv.2105.06178. URL
http://arxiv.org/abs/2105.06178. | |
dc.relation | Aragón-Calvo, M. A., E. Platen, R. Van De Weygaert et collab. 2010, ¿The spine of the cosmic web¿, Astrophysical Journal, vol. 723, 1, doi:10.1088/0004-637X/723/1/364, p. 364¿382, ISSN 15384357. URL http://arxiv.org/abs/0809.5104http://dx.doi.org/10. 1088/0004-637X/723/1/364. | |
dc.relation | Amendola, L., S. Appleby, A. Avgoustidis et collab. 2016, ¿Cosmology and Fundamental Physics with the Euclid Satellite¿, doi:10.1007/s41114-017-0010-3. URL http://arxiv.org/ abs/1606.00180http://dx.doi.org/10.1007/s41114-017-0010-3. | |
dc.relation | Ball, N. M. et R. J. Brunner. 2010, ¿Data mining and machine learning in astronomy¿, Int. J.
Mod. Phys. D, vol. 19, 7, doi:10.1142/S0218271810017160, p. 1049¿1106, ISSN 02182718. URL
https://arxiv.org/abs/0906.2173. | |
dc.relation | Baron, D. 2019, ¿Machine Learning in Astronomy: a practical overview¿, URL http:
//arxiv.org/abs/1904.07248. | |
dc.relation | Beck, R., L. Dobos, T. Budav ¿ari et collab. 2016, ¿Photometric redshifts for the SDSS Data Release
12¿, Monthly Notices of the Royal Astronomical Society, vol. 460, doi:10.1093/mnras/stw1009,
p. 1371¿1381, ISSN 13652966. URL http://arxiv.org/abs/1603.09708http://dx.doi.
org/10.1093/mnras/stw1009. | |
dc.relation | Bellm, E. C., S. R. Kulkarni, M. J. Graham et collab. 2019, ¿The zwicky transient facility:
System overview, performance, and first results¿, Publications of the Astronomical Society
of the Pacific, vol. 131, 995, doi:10.1088/1538-3873/aaecbe, p. 018 002, ISSN 00046280. URL
https://doi.org/10.1088/1538-3873/aaecbe. | |
dc.relation | Bhatia, N. et Vandana. 2010, ¿Survey of nearest neighbor techniques¿, URL http://arxiv.
org/abs/1007.0085. | |
dc.relation | Bishop,
C.
M.
2006,
Pattern
Recoginiton
and
Machine
Learning,
Springer,
ISBN
978-0-387-31073-2,
738
p..
URL
https://www.springer.com/gp/book/
9780387310732{%}0Ahttp://users.isr.ist.utl.pt/{ ¿}wurmd/Livros/school/
Bishop-PatternRecognitionAndMachineLearning-Springer2006.pdf. | |
dc.relation | Bond, J. R., L. Kofman et D. Pogosyan. 1996, ¿How filaments of galaxies are woven into the
cosmic web¿, Nature, vol. 380, 6575, doi:10.1038/380603a0, p. 603¿606, ISSN 00280836. URL
https://arxiv.org/abs/astro-ph/9512141. | |
dc.relation | Bonnaire, T., N. Aghanim, A. Decelle et collab. 2020, ¿T-ReX: A graph-based filament
detection method¿, Astronomy and Astrophysics, vol. 637, doi:10.1051/0004-6361/201936859,
ISSN 14320746. URL http://arxiv.org/abs/1912.00732http://dx.doi.org/10.1051/
0004-6361/201936859. | |
dc.relation | Breiman, L. 2001, ¿Random Forests¿, Machine Learning, vol. 45, p. 5¿32. | |
dc.relation | Bustamante, S. et J. E. Forero-Romero. 2015, ¿Tensor anisotropy as a tracer of cosmic voids¿,
Mon. Not. R. Astron. Soc., vol. 453, 1, doi:10.1093/mnras/stv1637, p. 497¿506, ISSN 13652966. | |
dc.relation | Cappellaro, E., R. Evans et M. Turatto. 1999, ¿A new determination of supernova rates and
a comparison with indicators for galactic star formation¿, URL http://arxiv.org/abs/
astro-ph/9904225. | |
dc.relation | Carrasco-Davis, R., G. Cabrera-Vives, F. Förster et collab. 2019, ¿Deep learning for image
sequence classification of astronomical events¿, Publications of the Astronomical Society of the
Pacific, vol. 131, 1004, doi:10.1088/1538-3873/aaef12, ISSN 00046280. | |
dc.relation | Cassan, A., D. Kubas, J. P. Beaulieu et collab. 2012, ¿One or more bound planets per Milky
Way star from microlensing observations¿, Nature, vol. 481, 7380, doi:10.1038/nature10684,
p. 167¿169, ISSN 00280836. URL http://arxiv.org/abs/1202.0903http://dx.doi.org/
10.1038/nature10684. | |
dc.relation | Cautun, M., R. Van De Weygaert, B. J. Jones et collab. 2014, ¿Evolution of the cosmic web¿,
Mon. Not. R. Astron. Soc., vol. 441, 4, doi:10.1093/mnras/stu768, p. 2923¿2973, ISSN 13652966. | |
dc.relation | Cautun, M., R. van de Weygaert et B. J. Jones. 2013, ¿Nexus: Tracing the cosmic web
connection¿, Monthly Notices of the Royal Astronomical Society, vol. 429, 2, doi:10.1093/mnras/
sts416, p. 1286¿1308, ISSN 00358711. | |
dc.relation | Chambers, K. C., E. A. Magnier, N. Metcalfe et collab. 2016, ¿The Pan-STARRS1 Surveys¿,
cahier de recherche. URL http://arxiv.org/abs/1612.05560. | |
dc.relation | Chaussidon, E., C. Yèche, N. Palanque-Delabrouille et collab. 2022, ¿Target selection and
validation of desi quasars¿, doi:10.48550/arxiv.2208.08511. URL https://arxiv.org/abs/
2208.08511. | |
dc.relation | Chawla, N. V., K. W. Bowyer, L. O. Hall et collab. 2002, ¿Smote: Synthetic minority over-
sampling technique¿, Journal of Artificial Intelligence Research, vol. 16, doi:10.1613/jair.953,
ISSN 10769757. | |
dc.relation | Chen, T. et C. Guestrin. 2016, ¿XGBoost: A scalable tree boosting system¿, Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol.
13-17-August-2016, doi:10.1145/2939672.2939785, p. 785¿794. URL http://dx.doi.org/10.
1145/2939672.2939785. | |
dc.relation | Chen, X., C. Dvorkin, Z. Huang et collab. 2016, ¿The Future of Primordial Features with
Large-Scale Structure Surveys¿, doi:10.1088/1475-7516/2016/11/014. URL http://arxiv.
org/abs/1605.09365http://dx.doi.org/10.1088/1475-7516/2016/11/014. | |
dc.relation | Chen, Y. C., S. Ho, P. E. Freeman et collab. 2015, ¿Cosmic web reconstruction through
density ridges: Method and algorithm¿, Mon. Not. R. Astron. Soc., vol. 454, 1, doi:
10.1093/mnras/stv1996, p. 1140¿1156, ISSN 13652966. | |
dc.relation | Coil, A. L. 2013, ¿The large-scale structure of the universe¿, Planets, Stars Stellar
Syst. Vol. 6 Extragalactic Astron. Cosmol., doi:10.1007/978-94-007-5609-0 8, p. 387¿421,
ISSN 0038-6308. URL http://arxiv.org/abs/1202.6633http://dx.doi.org/10.1007/
978-94-007-5609-0{_}8. | |
dc.relation | Cooper, A. P., S. E. Koposov, C. A. Prieto et collab. 2022, ¿Overview of the desi milky way
survey¿, doi:10.48550/arxiv.2208.08514. URL https://arxiv.org/abs/2208.08514. | |
dc.relation | Cover, T. M. et P. E. Hart. 1967, ¿Nearest neighbor pattern classification¿, IEEE Transactions
on Information Theory, vol. 13, doi:10.1109/TIT.1967.1053964, ISSN 15579654. | |
dc.relation | Cristianini, N. et J. Shawe-Taylor. 2013, An Introduction to Support Vector Machines and Other
Kernel-based Learning Methods, Cambridge Univ. Press, doi:10.1017/cbo9780511801389. | |
dc.relation | DESI Collaboration, A. Aghamousa, J. Aguilar et collab. 2016a, ¿The DESI Experiment
Part I: Science,Targeting, and Survey Design¿, arXiv, p. arXiv:1611.00 036. URL http:
//arxiv.org/abs/1611.00036. | |
dc.relation | DESI Collaboration, A. Aghamousa, J. Aguilar et collab. 2016b, ¿The DESI Experiment Part II:
Instrument Design¿, arXiv, p. arXiv:1611.00 037. URL http://arxiv.org/abs/1611.00037 | |
dc.relation | Dey, A., D. J. Schlegel, D. Lang et collab. 2018, ¿Overview of the desi legacy imaging
surveys¿, doi:10.3847/1538-3881/ab089d. URL http://arxiv.org/abs/1804.08657http:
//dx.doi.org/10.3847/1538-3881/ab089d. | |
dc.relation | Dey, B., B. H. Andrews, J. A. Newman et collab. 2021, ¿Photometric Redshifts from SDSS Images
with an Interpretable Deep Capsule Network¿, vol. 18, doi:10.48550/arxiv.2112.03939, p.
1¿18. URL http://arxiv.org/abs/2112.03939. | |
dc.relation | D¿Isanto, A., S. Cavuoti, M. Brescia et collab. 2016, ¿An analysis of feature relevance in the
classification of astronomical transients with machine learning methods¿, Monthly Notices
of the Royal Astronomical Society, vol. 457, doi:10.1093/mnras/stw157, p. 3119¿3132. | |
dc.relation | Djorgovski, S. G., A. A. Mahabal, C. Donalek et collab. 2012, ¿Flashes in a star stream:
Automated classification of astronomical transient events¿, dans 2012 IEEE 8th International
Conference on E-Science, IEEE, doi:10.1109/escience.2012.6404437. URL https://doi.org/
10.1109%2Fescience.2012.6404437. | |
dc.relation | Dosovitskiy, A., L. Beyer, A. Kolesnikov et collab. 2020, ¿An image is worth 16x16 words:
Transformers for image recognition at scale¿, URL http://arxiv.org/abs/2010.11929. | |
dc.relation | Drake, A. J., S. G. Djorgovski, A. Mahabal et collab. 2009, ¿First results from the Catalina Real-
Time Transient Survey¿, Astrophysical Journal, vol. 696, 1, doi:10.1088/0004-637X/696/1/870,
p. 870¿884, ISSN 15384357. URL http://palquest.org. | |
dc.relation | Drake, A. J., S. G. Djorgovski, A. Mahabal et collab. 2012, ¿The Catalina Real-time Transient
Survey¿, dans New Horizons in Time Domain Astronomy, IAU Symposium, vol. 285, édité par
E. Griffin, R. Hanisch et R. Seaman, p. 306¿308, doi:10.1017/S1743921312000889. | |
dc.relation | Dyer, M. J., D. Steeghs, D. K. Galloway et collab. 2020, ¿The Gravitational-wave Optical
Transient Observer (GOTO)¿, cahier de recherche, doi:10.1117/12.2561008. | |
dc.relation | Elyiv, A., F. Marulli, G. Pollina et collab. 2015, ¿Cosmic voids detection without density
measurements¿, Monthly Notices of the Royal Astronomical Society, vol. 448, 1, doi:10.1093/
mnras/stv043, p. 642¿653, ISSN 13652966. URL http://arxiv.org/abs/1410.4559http:
//dx.doi.org/10.1093/mnras/stv043. | |
dc.relation | Fang, F., J. Forero-Romero, G. Rossi et collab. 2019, ¿¿-Skeleton analysis of the cosmic web¿,
Mon. Not. R. Astron. Soc., vol. 485, 4, doi:10.1093/mnras/stz773, p. 5276¿5284, ISSN 13652966 | |
dc.relation | Fix, E. et J. L. Hodges. 1989, ¿Discriminatory analysis. nonparametric discrimination: Consis-
tency properties¿, International Statistical Review / Revue Internationale de Statistique, vol. 57,
doi:10.2307/1403797, ISSN 03067734. | |
dc.relation | Forero-Romero, J. E., Y. Hoffman, S. Gottlöber et collab. 2009, ¿A dynamical classification of
the cosmic web¿, Mon. Not. R. Astron. Soc., vol. 396, 3, doi:10.1111/j.1365-2966.2009.14885.x,
p. 1815¿1824, ISSN 00358711. | |
dc.relation | Forgy, E. W. 1965, ¿Cluster analysis of multivariate data: efficiency versus interpretability of
classifications¿, Biometrics, vol. 21. | |
dc.relation | Garcia-Alvarado, M. V., X. D. Li et J. E. Forero-Romero. 2020, ¿The cosmic web through the
lens of graph entropy¿, Monthly Notices of the Royal Astronomical Society: Letters, vol. 498, 1,
doi:10.1093/mnrasl/slaa145, p. L145¿L149, ISSN 17453933. URL https://arxiv.org/abs/
2008.08164. | |
dc.relation | Gatti, M., A. Lamastra, N. Menci et collab. 2014, ¿The physical properties of AGN host
galaxies as a probe of SMBH feeding mechanisms¿, arXiv:1412.7660 [astro-ph]. | |
dc.relation | Geary, D. N., G. J. McLachlan et K. E. Basford. 1989, ¿Mixture Models: Inference and
Applications to Clustering.¿, Journal of the Royal Statistical Society. Series A (Statistics in
Society), vol. 152, doi:10.2307/2982840, ISSN 09641998. | |
dc.relation | Genel, S., M. Vogelsberger, V. Springel et collab. 2014, ¿Introducing the illustris project:
the evolution of galaxy populations across cosmic time¿, MNRAS, vol. 445, doi:10.1093/
mnras/stu1654, p. 175¿200. URL https://academic.oup.com/mnras/article/445/1/175/
985625. | |
dc.relation | Gieseke, F., S. Bloemen, C. van den Bogaard et collab. 2017, ¿Convolutional neural networks
for transient candidate vetting in large-scale surveys¿, Monthly Notices of the Royal Astro-
nomical Society, vol. 472, 3, doi:10.1093/mnras/stx2161, p. 3101¿3114, ISSN 13652966. URL
https://arxiv.org/abs/1708.08947. | |
dc.relation | Glielmo, A., I. Macocco, D. Doimo et collab. 2022, ¿Dadapy: Distance-based analysis of
data-manifolds in python¿, Patterns, doi:https://doi.org/10.1016/j.patter.2022.100589, p.100 589, ISSN 2666-3899. URL https://www.sciencedirect.com/science/article/pii/
S2666389922002070. | |
dc.relation | Gómez, C., M. Neira, M. H. Hoyos et collab. 2020, ¿Classifying image sequences of astronomical transients with deep neural networks¿, Monthly Notices of the Royal Astronomi-cal Society, vol. 499, 3, doi:10.1093/mnras/staa2973, p. 3130¿3138, ISSN 13652966. URL
http://arxiv.org/abs/2004.13877http://dx.doi.org/10.1093/mnras/staa2973. | |
dc.relation | Goodfellow, I., J. Pouget-Abadie, M. Mirza et collab. 2020, ¿Generative Adversarial Networks¿, Communications of the ACM, vol. 63, doi:10.1145/3422622, p. 139¿144, ISSN 15577317.
URL https://arxiv.org/abs/1406.2661. | |
dc.relation | Graham, M. J., S. G. Djorgovski, A. Mahabal et collab. 2012, ¿Data challenges of time domain
astronomy¿, doi:10.1007/s10619-012-7101-7. URL http://arxiv.org/abs/1208.2480http:
//dx.doi.org/10.1007/s10619-012-7101-7. | |
dc.relation | Grogin, N. A., D. D. Kocevski, S. M. Faber et collab. 2011, ¿CANDELS: The Cosmic Assembly
Near-infrared Deep Extragalactic Legacy Survey¿, doi:10.1088/0067-0049/197/2/35. URL
https://arxiv.org/abs/1105.3753. | |
dc.relation | Guy, J., S. Bailey, A. Kremin et collab. 2022, ¿The spectroscopic data processing pipeline
for the dark energy spectroscopic instrument¿, doi:10.48550/arxiv.2209.14482. URL http:
//arxiv.org/abs/2209.14482. | |
dc.relation | Génova-Santos, R. T. 2020, ¿The establishment of the Standard Cosmological Model
through observations¿, doi:10.1007/978-3-030-38509-5 11. URL http://arxiv.org/abs/
2001.08297http://dx.doi.org/10.1007/978-3-030-38509-5_11. | |
dc.relation | Ha, J., M. Kambe et J. Pe. 2011, Data Mining: Concepts and Techniques, doi:10.1016/
C2009-0-61819-5. | |
dc.relation | Hahn, C., M. J. Wilson, O. Ruiz-Macias et collab. 2022, ¿Desi bright galaxy survey: Final
target selection, design, and validation¿, doi:10.48550/arxiv.2208.08512. URL http://arxiv.
org/abs/2208.08512. | |
dc.relation | Hahn, O., C. Porciani, C. M. Carollo et collab. 2007, ¿Properties of dark matter haloes
in clusters, filaments, sheets and voids¿, Mon. Not. R. Astron. Soc., vol. 375, 2, doi:10.1111/j.1365-2966.2006.11318.x, p. 489¿499, ISSN 00358711. URL https://doi.org/10.
1111/j.1365-2966.2006.11318.x. | |
dc.relation | He, K., X. Zhang, S. Ren et collab. 2015, ¿Deep Residual Learning for Image Recognition¿,
URL http://arxiv.org/abs/1512.03385. | |
dc.relation | Huchra, J. P. et M. J. Geller. 1982, ¿Groups of galaxies. i - nearby groups¿, The Astrophysical
Journal, vol. 257, doi:10.1086/160000, p. 423, ISSN 0004-637X. | |
dc.relation | Humphrey, A., P. A. C. Cunha, A. Paulino-Afonso et collab. 2023, ¿Improving machine
learning-derived photometric redshifts and physical property estimates using unlabelled
observations¿, Monthly Notices of the Royal Astronomical Society, vol. 520, doi:10.1093/mnras/
stac3596, p. 305¿313, ISSN 0035-8711. URL http://arxiv.org/abs/2212.02537http://
dx.doi.org/10.1093/mnras/stac3596. | |
dc.relation | Hotelling, H. 1933, ¿Analysis of a complex of statistical variables into principal components¿, J. Educ. Psychol., vol. 24, 6, doi:10.1037/h0071325, p. 417¿441, ISSN 00220663. URL
/doiLanding?doi=10.1037{%}2Fh0071325. | |
dc.relation | ¿eljko Ivezi¿, S. M. Kahn, J. A. Tyson et collab. 2008, ¿Lsst: from science drivers to
reference design and anticipated data products¿, doi:10.3847/1538-4357/ab042c. URL
http://arxiv.org/abs/0805.2366http://dx.doi.org/10.3847/1538-4357/ab042c. | |
dc.relation | de Jong, R. S., O. Agertz, A. A. Berbel et collab. 2019, ¿4most: Project overview and
information for the first call for proposals¿, doi:10.18727/0722-6691/5117. URL http:
//arxiv.org/abs/1903.02464http://dx.doi.org/10.18727/0722-6691/5117. | |
dc.relation | Kaiser, N. 2004, ¿Pan-STARRS: a wide-field optical survey telescope array¿, dans Ground-based
Telescopes, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5489,
édité par J. Oschmann, Jacobus M., p. 11¿22, doi:10.1117/12.552472. | |
dc.relation | Kennicutt, J., Robert C., W. L. Freedman et J. R. Mould. 1995, ¿Measuring the Hubble
Constant with the Hubble Space Telescope¿, , vol. 110, doi:10.1086/117621, p. 1476. | |
dc.relation | Killestein, T. L., J. Lyman, D. Steeghs et collab. 2021, ¿Transient-optimized real-bogus classifi-
cation with Bayesian convolutional neural networks ¿ sifting the GOTO candidate stream¿,
cahier de recherche 4, doi:10.1093/mnras/stab633. URL https://wis-tns.weizmann.ac.
il/. | |
dc.relation | Knop, R. A., G. Aldering, R. Amanullah et collab. 2003, ¿New Constraints on ¿M, ¿¿ , and
w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble
Space Telescope¿, , vol. 598, 1, doi:10.1086/378560, p. 102¿137. | |
dc.relation | Konopacky, Q. M., J. Rameau, G. Duchêne et collab. 2016, ¿Discovery of a Substellar
Companion To the Nearby Debris Disk Host Hr 2562¿, Astrophys. J., vol. 829, 1, doi:10.3847/
2041-8205/829/1/l4, p. L4, ISSN 20418213. URL http://arxiv.org/abs/1608.06660http:
//dx.doi.org/10.3847/2041-8205/829/1/L4. | |
dc.relation | Koutroumbas, K. 2006, Pattern Recognition, doi:10.1016/B978-0-12-369531-4.X5000-8. | |
dc.relation | Kruskal, J. B. 1964, ¿Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis¿, Psychometrika, vol. 29, 1, doi:10.1007/BF02289565, p. 1¿27, ISSN 00333123. URL
https://link.springer.com/article/10.1007/BF02289565. | |
dc.relation | Lamassa, S. M., T. M. Heckman, A. Ptak et collab. 2013, ¿On the star formation-AGN
connection at z ¡ 0.3¿, Astrophysical Journal Letters, vol. 765, doi:10.1088/2041-8205/765/2/L33,
ISSN 20418205. | |
dc.relation | Laureijs, R., J. Amiaux, S. Arduini et collab. 2011, ¿Euclid definition study report¿, URL
http://arxiv.org/abs/1110.3193. | |
dc.relation | Law, N. M., S. R. Kulkarni, R. G. Dekany et collab. 2009, ¿The Palomar Transient Factory:
System Overview, Performance, and First Results¿, cahier de recherche 886, doi:10.1086/
648598. | |
dc.relation | LeCun, Y., L. Bottou, Y. Bengio et collab. 1998, ¿Gradient-based learning applied to document
recognition¿, Proceedings of the IEEE, vol. 86, doi:10.1109/5.726791, ISSN 00189219. | |
dc.relation | Li, C., Y. Zhang, C. Cui et collab. 2022, ¿Photometric redshift estimation of galaxies in the
DESI Legacy Imaging Surveys¿, doi:10.1093/mnras/stac3037. URL http://arxiv.org/abs/
2211.09492http://dx.doi.org/10.1093/mnras/stac3037. | |
dc.relation | Li, H. et J.-Q. Xia. 2010, ¿Constraints on Dark Energy Parameters from Correlations of
CMB with LSS¿, doi:10.1088/1475-7516/2010/04/026. URL http://arxiv.org/abs/1004.
2774http://dx.doi.org/10.1088/1475-7516/2010/04/026. | |
dc.relation | Libeskind, N. I., R. van de Weygaert, M. Cautun et collab. 2018, ¿Tracing the cosmic web¿,
Mon. Not. R. Astron. Soc., vol. 473, 1, doi:10.1093/mnras/stx1976, p. 1195¿1217, ISSN 13652966.
URL http://arxiv.org/abs/1705.03021http://dx.doi.org/10.1093/mnras/stx1976. | |
dc.relation | Ling, R. F. 1972, ¿On the theory and construction of k-clusters¿, The Computer Journal, vol. 15,
doi:10.1093/comjnl/15.4.326, ISSN 0010-4620. | |
dc.relation | Lloyd, S. P. 1982, ¿Least Squares Quantization in PCM¿, IEEE Transactions on Information
Theory, vol. 28, doi:10.1109/TIT.1982.1056489, ISSN 15579654. | |
dc.relation | Lochner, M., J. D. McEwen, H. V. Peiris et collab. 2016, ¿Photometric Supernova Classification
with Machine Learning¿, , vol. 225, doi:10.3847/0067-0049/225/2/31, 31. | |
dc.relation | LSST Science Collaboration, P. A. Abell, J. Allison et collab. 2009, ¿LSST Science Book¿,
URL http://arxiv.org/abs/0912.0201. | |
dc.relation | Luber, N., J. H. van Gorkom, K. M. Hess et collab. 2019, ¿Large-scale Structure in CHILES
Using DisPerSE¿, Astron. J., vol. 157, 6, doi:10.3847/1538-3881/ab1b6e, p. 254, ISSN 0004-6256.
URL http://arxiv.org/abs/1904.10511. | |
dc.relation | Mahabal, A. A., S. G. Djorgovski, A. J. Drake et collab. 2011, ¿Discovery, classiffcation, and
scientiffc exploration of transient events from the Catalina Real-Time Transient Survey¿,
Bulletin of the Astronomical Society of India, vol. 39, 3, p. 387¿408, ISSN 03049523. URL
http://palquest.org/;. | |
dc.relation | Marinacci, F., M. Vogelsberger, R. Pakmor et collab. 2018, ¿First results from the IllustrisTNG
simulations: Radio haloes and magnetic fields¿, Monthly Notices of the Royal Astronomical
Society, vol. 480, 4, doi:10.1093/mnras/sty2206, p. 5113¿5139, ISSN 13652966. URL http:
//arxiv.org/abs/1707.03396http://dx.doi.org/10.1093/mnras/sty2206. | |
dc.relation | Mart¿¿nez-Palomera, J., F. Förster, P. Protopapas et collab. 2018, ¿The High Cadence
Transit Survey (HiTS): Compilation and Characterization of Light-curve Catalogs¿, The
Astronomical Journal, vol. 156, 5, doi:10.3847/1538-3881/aadfd8, p. 186, ISSN 1538-3881. URL
http://astro.cmm.uchile.cl/HiTS/. | |
dc.relation | McInnes, L., J. Healy et J. Melville. 2018, ¿UMAP: Uniform manifold approximation and
projection for dimension reduction¿, arXiv, ISSN 23318422. URL http://arxiv.org/abs/
1802.03426. | |
dc.relation | McLachlan, G. J., S. X. Lee et S. I. Rathnayake. 2019, ¿Finite Mixture Models¿, Annual Review
of Statistics and Its Application, vol. 6, doi:10.1146/annurev-statistics-031017-100325, ISSN
2326831X. | |
dc.relation | Murtagh, F. et P. Contreras. 2012, ¿Algorithms for hierarchical clustering: An overview¿,
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 2, doi:10.1002/
widm.53, ISSN 19424795. | |
dc.relation | Muthukrishna, D., G. Narayan, K. S. Mandel et collab. 2019, ¿RAPID: Early Classification of
Explosive Transients Using Deep Learning¿, doi:10.1088/1538-3873/ab1609. | |
dc.relation | Myers, A. D., J. Moustakas, S. Bailey et collab. 2023, ¿The Target-selection Pipeline for the
Dark Energy Spectroscopic Instrument¿, , vol. 165, 2, doi:10.3847/1538-3881/aca5f9, 50. | |
dc.relation | Naiman, J. P., A. Pillepich, V. Springel et collab. 2018, ¿First results from the IllustrisTNG
simulations: A tale of two elements - Chemical evolution of magnesium and europium¿,
Monthly Notices of the Royal Astronomical Society, vol. 477, 1, doi:10.1093/mnras/sty618,
p. 1206¿1224, ISSN 13652966. URL http://arxiv.org/abs/1707.03401http://dx.doi.
org/10.1093/mnras/sty618. | |
dc.relation | Neira, M., C. Gómez, J. F. Suárez-Pérez et collab. 2020, ¿MANTRA: A Machine-learning
Reference Light-curve Data Set for Astronomical Transient Event Recognition¿, , vol. 250,
1, doi:10.3847/1538-4365/aba267, 11. | |
dc.relation | Nelson, D., A. Pillepich, S. Genel et collab. 2015, ¿The illustris simulation: Public data
release¿, Astronomy and Computing, vol. 13, doi:10.1016/j.ascom.2015.09.003, p. 12¿37,
ISSN 22131337. URL http://arxiv.org/abs/1504.00362http://dx.doi.org/10.1016/
j.ascom.2015.09.003. | |
dc.relation | Nelson, D., A. Pillepich, V. Springel et collab. 2018, ¿First results from the IllustrisTNG
simulations: The galaxy colour bimodality¿, Monthly Notices of the Royal Astronomical
Society, vol. 475, 1, doi:10.1093/mnras/stx3040, p. 624¿647, ISSN 13652966. URL http:
//arxiv.org/abs/1707.03395http://dx.doi.org/10.1093/mnras/stx3040. | |
dc.relation | Nelson, D., V. Springel, A. Pillepich et collab. 2019, ¿The IllustrisTNG simulations: public
data release¿, Comput. Astrophys. Cosmol., vol. 6, 1, doi:10.1186/s40668-019-0028-x, ISSN
2197-7909. URL https://arxiv.org/abs/1812.05609. | |
dc.relation | Newman,
J.
A.
et
D.
Gruen.
2022,
¿
Photometric
Redshifts
for
Next-
Generation
Surveys¿,
Annu.
Rev.
Astron.
Astrophys.,
vol.
60,
doi:10.1146/
annurev-astro-032122-014611.
URL
http://arxiv.org/abs/2206.13633http:
//dx.doi.org/10.1146/annurev-astro-032122-014611. | |
dc.relation | Neyrinck, M. C. 2008,
¿
Zobov:
A parameter-free void-finding algorithm¿, Mon.
Not. R. Astron. Soc., vol. 386,
4, doi:10.1111/j.1365-2966.2008.13180.x, p. 2101¿2109,
ISSN 00358711. URL http://arxiv.org/abs/0712.3049http://dx.doi.org/10.1111/j.
1365-2966.2008.13180.x. | |
dc.relation | Nidever, D. L., A. Dey, K. Fasbender et collab. 2021, ¿Second Data Release of the All-sky
NOIRLab Source Catalog¿, cahier de recherche 4, doi:10.3847/1538-3881/abd6e1. URL
https://www.noao.edu/noao/staff/fvaldes/CPDocPrelim. | |
dc.relation | Novikov, D., S. Colombi et O. Doré. 2006, ¿Skeleton as a probe of the cosmic web: The two-
dimensional case¿, Mon. Not. R. Astron. Soc., vol. 366, 4, doi:10.1111/j.1365-2966.2005.09925.x,
p. 1201¿1216, ISSN 00358711. URL http://arxiv.org/abs/astro-ph/0307003http://dx.
doi.org/10.1111/j.1365-2966.2005.09925.x. | |
dc.relation | Padilla, N. D., L. Ceccarelli et D. G. Lambas. 2005, ¿Spatial and dynamical properties of
voids in a ¿cold dark matter universe¿, Monthly Notices of the Royal Astronomical Society, vol.
363, 3, doi:10.1111/j.1365-2966.2005.09500.x, p. 977¿990, ISSN 00358711. URL http://arxiv.
org/abs/astro-ph/0508297http://dx.doi.org/10.1111/j.1365-2966.2005.09500.x. | |
dc.relation | Paszke, A., S. Gross, F. Massa et collab. 2019, ¿PyTorch: An imperative style, high-performance
deep learning library¿, ISSN 10495258. | |
dc.relation | Pearson, K. 1901, ¿ LIII. On lines and planes of closest fit to systems of points in space ¿, Lon-
don, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 2, 11, doi:10.1080/14786440109462720,
p. 559¿572, ISSN 1941-5982. URL https://www.tandfonline.com/doi/abs/10.1080/
14786440109462720. | |
dc.relation | Pedregosa, F., G. Varoquaux, A. Gramfort et collab. 2011, ¿Scikit-learn: Machine learning in
Python¿, J. Mach. Learn. Res., vol. 12, p. 2825¿2830, ISSN 15324435. | |
dc.relation | Percival, W. J. 2013, ¿Large Scale Structure Observations¿, URL http://arxiv.org/abs/
1312.5490. | |
dc.relation | Perlmutter, S., G. Aldering, G. Goldhaber et collab. 1999, ¿Measurements of ¿ and ¿ from
42 High-Redshift Supernovae¿, , vol. 517, 2, doi:10.1086/307221, p. 565¿586. | |
dc.relation | Pillepich, A., D. Nelson, L. Hernquist et collab. 2018a, ¿First results from the illustristng
simulations: The stellar mass content of groups and clusters of galaxies¿, Monthly Notices
of the Royal Astronomical Society, vol. 475, 1, doi:10.1093/mnras/stx3112, p. 648¿675, ISSN
13652966. URL https://arxiv.org/abs/1707.03406. | |
dc.relation | Pillepich, A., V. Springel, D. Nelson et collab. 2018b, ¿Simulating galaxy formation with
the IllustrisTNG model¿, Monthly Notices of the Royal Astronomical Society, vol. 473, 3,
doi:10.1093/mnras/stx2656, p. 4077¿4106, ISSN 13652966. URL http://arxiv.org/abs/
1703.02970http://dx.doi.org/10.1093/mnras/stx2656. | |
dc.relation | Pillepich, A., V. Springel, D. Nelson et collab. 2018b, ¿Simulating galaxy formation with
the IllustrisTNG model¿, Monthly Notices of the Royal Astronomical Society, vol. 473, 3,
doi:10.1093/mnras/stx2656, p. 4077¿4106, ISSN 13652966. URL http://arxiv.org/abs/
1703.02970http://dx.doi.org/10.1093/mnras/stx2656. | |
dc.relation | Planck Collaboration, N. Aghanim, Y. Akrami et collab. 2020, ¿Planck 2018 results. I.
Overview and the cosmological legacy of Planck¿, , vol. 641, doi:10.1051/0004-6361/
201833880, A1. | |
dc.relation | Platen, E., R. Van De Weygaert et B. J. Jones. 2007, ¿A cosmic watershed: The WVF void
detection technique¿, Mon. Not. R. Astron. Soc., vol. 380, 2, doi:10.1111/j.1365-2966.2007.
12125.x, p. 551¿570, ISSN 00358711. | |
dc.relation | Prieto, C. A., A. P. Cooper, A. Dey et collab. 2020, ¿Preliminary target selection for the desi
milky way survey (mws)¿, doi:10.3847/2515-5172/abc1dc. URL https://arxiv.org/abs/
2010.11284. | |
dc.relation | Quinlan, J. R. 1986, ¿Induction of decision trees¿, Machine Learning, vol. 1, doi:10.1023/A:
1022643204877, ISSN 15730565. | |
dc.relation | Raichoor, A., D. J. Eisenstein, T. Karim et collab. 2020, ¿Preliminary target selection for
the desi emission line galaxy (elg) sample¿, doi:10.3847/2515-5172/abc078. URL http:
//arxiv.org/abs/2010.11281http://dx.doi.org/10.3847/2515-5172/abc078. | |
dc.relation | Raichoor, A., J. Moustakas, J. A. Newman et collab. 2022, ¿Target selection and validation of
desi emission line galaxies¿, doi:10.3847/1538-3881/acb213. URL http://arxiv.org/abs/
2208.08513http://dx.doi.org/10.3847/1538-3881/acb213. | |
dc.relation | Richards, J. W., D. L. Starr, N. R. Butler et collab. 2011, ¿On Machine-learned Classification
of Variable Stars with Sparse and Noisy Time-series Data¿, , vol. 733, doi:10.1088/0004-637X/
733/1/10, 10. | |
dc.relation | Riess, A. G., A. V. Filippenko, P. Challis et collab. 1998, ¿Observational Evidence from
Supernovae for an Accelerating Universe and a Cosmological Constant¿, The Astronomical
Journal, vol. 116, doi:10.1086/300499, ISSN 00046256. | |
dc.relation | van Roestel, J., D. A. Duev, A. A. Mahabal et collab. 2021, ¿The ZTF Source Classification
Project. I. Methods and Infrastructure¿, The Astronomical Journal, vol. 161, 6, doi:10.3847/
1538-3881/abe853, p. 267, ISSN 0004-6256. URL http://arxiv.org/abs/2102.11304. | |
dc.relation | Ruiz-Macias, O., P. Zarrouk, S. Cole et collab. 2021, ¿Characterizing the target selection
pipeline for the dark energy spectroscopic instrument bright galaxy survey¿, Monthly Notices
of the Royal Astronomical Society, vol. 502, doi:10.1093/mnras/stab292, p. 4328¿4349, ISSN
13652966. URL https://ui.adsabs.harvard.edu/abs/2021MNRAS.502.4328R/abstract. | |
dc.relation | Russakovsky, O., J. Deng, H. Su et collab. 2015, ¿ImageNet Large Scale Visual Recognition
Challenge¿, International Journal of Computer Vision, vol. 115, doi:10.1007/s11263-015-0816-y,
ISSN 15731405. | |
dc.relation | Sánchez-Sáez, P., H. Lira, L. Mart¿¿ et collab. 2021a, ¿Searching for Changing-state AGNs
in Massive Data Sets. I. Applying Deep Learning and Anomaly-detection Techniques to
Find AGNs with Anomalous Variability Behaviors¿, Astron. J., vol. 162, 5, doi:10.3847/
1538-3881/ac1426, p. 206, ISSN 0004-6256. URL http://arxiv.org/abs/2106.07660http:
//dx.doi.org/10.3847/1538-3881/ac1426. | |
dc.relation | Sánchez-Sáez, P., I. Reyes, C. Valenzuela et collab. 2021b, ¿Alert Classification for the ALeRCE
Broker System: The Light Curve Classifier¿, cahier de recherche 3, doi:10.3847/1538-3881/
abd5c1. URL https://zwickytransientfacility.github.io/. | |
dc.relation | Schmalzing, J., T. Buchert, A. L. Melott et collab. 1999, ¿Disentangling the Cosmic Web.
I. Morphology of Isodensity Contours¿, Astrophys. J., vol. 526, 2, doi:10.1086/308039, p.
568¿578, ISSN 0004-637X. | |
dc.relation | Schneider, P. 2015, Extragalactic Astronomy and Cosmology, Springer, ISBN 978-3-642-54082-0
978-3-642-54083-7, doi:10.1007/978-3-642-54083-7. | |
dc.relation | Schonlau, M. et R. Y. Zou. 2020, ¿The random forest algorithm for statistical learning¿, Stata
Journal, vol. 20, doi:10.1177/1536867X20909688, ISSN 15368734. | |
dc.relation | Schuldt, S., S. H. Suyu, R. Cañameras et collab. 2020, ¿Photometric Redshift Estimation with
a Convolutional Neural Network: NetZ¿, doi:10.1051/0004-6361/202039945. URL http:
//arxiv.org/abs/2011.12312http://dx.doi.org/10.1051/0004-6361/202039945. | |
dc.relation | Scoville, N., H. Aussel, M. Brusa et collab. 2006, ¿The Cosmic Evolution Survey (COSMOS)
¿ Overview¿, doi:10.1086/516585. URL http://arxiv.org/abs/astro-ph/0612305http:
//dx.doi.org/10.1086/516585. | |
dc.relation | Sijacki, D., M. Vogelsberger, S. Genel et collab. 2015, ¿The illustris simulation: the evolving
population of black holes across cosmic time¿, MNRAS, vol. 452, doi:10.1093/mnras/stv1340,
p. 575¿596. URL https://academic.oup.com/mnras/article/452/1/575/1751371. | |
dc.relation | Smartt, S. J., S. Valenti, M. Fraser et collab. 2015, ¿PESSTO: Survey description and products
from the first data release by the Public ESO Spectroscopic Survey of Transient Objects¿,
Astronomy and Astrophysics, vol. 579, doi:10.1051/0004-6361/201425237, p. 6, ISSN 14320746.
URL www.pessto.org. | |
dc.relation | Smoot, G. F., C. L. Bennett, A. Kogut et collab. 1992, ¿Structure in the COBE Differential
Microwave Radiometer First-Year Maps¿, , vol. 396, doi:10.1086/186504, p. L1. | |
dc.relation | Song, Y. Y. et Y. Lu. 2015, ¿Decision tree methods: applications for classification and prediction¿,
Shanghai Archives of Psychiatry, vol. 27, doi:10.11919/j.issn.1002-0829.215044, ISSN 10020829 | |
dc.relation | Sousbie, T. 2011, ¿The persistent cosmic web and its filamentary structure - I. Theory and
implementation¿, Mon. Not. R. Astron. Soc., vol. 414, 1, doi:10.1111/j.1365-2966.2011.18394.x,
p. 350¿383, ISSN 00358711. URL https://arxiv.org/abs/1009.4015. | |
dc.relation | Spergel, D., N. Gehrels, C. Baltay et collab. 2015, ¿Wide-Field InfrarRed Survey Telescope-
Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report¿, URL http://arxiv.
org/abs/1503.03757. | |
dc.relation | Spergel, D. N., L. Verde, H. V. Peiris et collab. 2003, ¿First-Year Wilkinson Microwave
Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters¿, ,
vol. 148, 1, doi:10.1086/377226, p. 175¿194. | |
dc.relation | Springel, V. 2011,
¿
Moving-mesh hydrodynamics with the AREPO code¿, Proc.
Int.
Astron.
Union,
vol.
6,
S270,
doi:10.1017/S1743921311000378,
p.
203¿
206, ISSN 17439213. URL https://www.cambridge.org/core/product/identifier/
S1743921311000378/type/journal{_}article. | |
dc.relation | Springel, V., R. Pakmor, A. Pillepich et collab. 2018, ¿First results from the IllustrisTNG
simulations: Matter and galaxy clustering¿, Monthly Notices of the Royal Astronomical
Society, vol. 475, 1, doi:10.1093/mnras/stx3304, p. 676¿698, ISSN 13652966. URL http:
//arxiv.org/abs/1707.03397http://dx.doi.org/10.1093/mnras/stx3304. | |
dc.relation | Stetson, P. B. 1996, ¿On the Automatic Determination of Light-Curve Parameters for Cepheid
Variables¿, Publications of the Astronomical Society of the Pacific, vol. 108, doi:10.1086/133808,
p. 851, ISSN 0004-6280. URL http://iopscience.iop.org/article/10.1086/133808. | |
dc.relation | Stoica, R. S., V. J. Mart¿¿nez et E. Saar. 2007, ¿A three-dimensional object point process
for detection of cosmic filaments¿, Journal of the Royal Statistical Society. Series C: Applied
Statistics, vol. 56, 4, doi:10.1111/j.1467-9876.2007.00587.x, p. 459¿477, ISSN 00359254. URL
http://arxiv.org/abs/0809.4358. | |
dc.relation | Suárez-Pérez, J. F., Forero-Romero, Jaime E. et DESI Collaboration. a, ¿Quality assessment
of spectroscopic data reduction pipelines using unsupervised machine learning: a case
study of the DESI survey¿, In Preparation. | |
dc.relation | Suárez-Pérez, J. F., C. Gómez, M. Neira et collab. b, ¿Deep-TAO: The Deep Learning Transient
Astronomical object data set for Astronomical Transient Event Classification¿, In Preparation. | |
dc.relation | Suárez-Pérez, J. F., Sabiu, Cristiano et Forero-Romero, Jaime E. c, ¿Predicting photometric
redshift of Bright Galaxies from the 1% DESI.¿, In Preparation. | |
dc.relation | Sutter, P. M., G. Lavaux, N. Hamaus et collab. 2015, ¿VIDE: The Void IDentification and
Examination toolkit¿, Astronomy and Computing, vol. 9, doi:10.1016/j.ascom.2014.10.002, p.
1¿9, ISSN 22131337. URL http://arxiv.org/abs/1406.1191. | |
dc.relation | Suárez-Pérez, J. F., Y. Camargo, X.-D. Li et collab. 2021, ¿The four cosmic tidal web elements
from the ¿-skeleton¿, The Astrophysical Journal, vol. 922, doi:10.3847/1538-4357/ac1fed, p.
204, ISSN 0004-637X. URL http://arxiv.org/abs/2108.10351. | |
dc.relation | Tang, J., J. Liu, M. Zhang et collab. 2016, ¿Visualizing Large-scale and High-dimensional Data¿,
doi:10.1145/2872427.2883041, p. 287¿297. URL http://dx.doi.org/10.1145/2872427.
2883041. | |
dc.relation | Tegmark, M. 1997, ¿Measuring cosmological parameters with galaxy surveys¿, doi:
10.1103/PhysRevLett.79.3806. URL http://arxiv.org/abs/astro-ph/9706198http://dx.
doi.org/10.1103/PhysRevLett.79.3806. | |
dc.relation | Tenenbaum, J. B., V. De Silva et J. C. Langford. 2000, ¿A global geometric framework for
nonlinear dimensionality reduction¿, Science (80-. )., vol. 290, 5500, doi:10.1126/science.
290.5500.2319, p. 2319¿2323, ISSN 00368075. URL https://www.science.org/doi/abs/10.
1126/science.290.5500.2319. | |
dc.relation | The PLAsTiCC team, J. Allam, Tarek, A. Bahmanyar et collab. 2018, ¿The Photometric LSST
Astronomical Time-series Classification Challenge (PLAsTiCC): Data set¿, arXiv e-prints,
arXiv:1810.00001. | |
dc.relation | Tonry, J. L., B. P. Schmidt, B. Barris et collab. 2003, ¿Cosmological Results from High-z
Supernovae¿, , vol. 594, 1, doi:10.1086/376865, p. 1¿24. | |
dc.relation | Tsizh, M., B. Novosyadlyj, Y. Holovatch et collab. 2020, ¿Large-scale structures in the ¿CDM
Universe: network analysis and machine learning¿, Mon. Not. R. Astron. Soc., vol. 495, 1,
doi:10.1093/mnras/staa1030, p. 1311¿1320, ISSN 0035-8711. URL http://arxiv.org/abs/
1910.07868. | |
dc.relation | Van Der Maaten, L., A. Courville, R. Fergus et collab. 2014, ¿Accelerating t-SNE using
Tree-Based Algorithms¿, J. Mach. Learn. Res., vol. 15, 93, p. 3221¿3245, ISSN 1533-7928. URL
http://jmlr.org/papers/v15/vandermaaten14a.html. | |
dc.relation | Van Der Maaten, L. et G. Hinton. 2008, ¿Visualizing data using t-SNE¿, J. Mach. Learn. Res.,
vol. 9, p. 2579¿2625, ISSN 15324435. | |
dc.relation | Vaswani, A., N. Shazeer, N. Parmar et collab. 2017, ¿Attention is all you need¿, URL
https://arxiv.org/abs/1706.03762. | |
dc.relation | Vogelsberger, M., S. Genel, V. Springel et collab. 2014, ¿Properties of galaxies reproduced by
a hydrodynamic simulation¿, Nature, vol. 509, 7499, doi:10.1038/nature13316, p. 177¿182,
ISSN 14764687. | |
dc.relation | Way, M. J., J. D. Scargle, K. M. Ali et collab. 2012, Advances in Machine Learning and Data
Mining for Astronomy, doi:10.1201/b11822. | |
dc.relation | Wechsler, R. H. et J. L. Tinker. 2018, ¿The connection between galaxies and their dark
matter halos¿, doi:10.1146/annurev-astro-081817-051756. URL http://arxiv.org/abs/
1804.03097http://dx.doi.org/10.1146/annurev-astro-081817-051756. | |
dc.relation | Weinberger, R., V. Springel, L. Hernquist et collab. 2017, ¿Simulating galaxy formation with
black hole driven thermal and kinetic feedback¿, Monthly Notices of the Royal Astronomical
Society, vol. 465, 3, doi:10.1093/mnras/stw2944, p. 3291¿3308, ISSN 13652966. URL http:
//arxiv.org/abs/1607.03486http://dx.doi.org/10.1093/mnras/stw2944. | |
dc.relation | White, S. D. M., C. S. Frenk, M. Davis et collab. 1987, ¿Clusters, filaments, and voids in a
universe dominated by cold dark matter¿, Astrophys. J., vol. 313, doi:10.1086/164990, p. 505,
ISSN 0004-637X. | |
dc.relation | Witten, I. H., E. Frank, M. A. Hall et collab. 2016, Data Mining: Practical Machine Learning
Tools and Techniques. | |
dc.relation | Wyrzykowski, L., Z. Kostrzewa-Rutkowska, S. Kozlowski et collab. 2014, ¿OGLE-IV real-time
transient search¿, cahier de recherche 3. | |
dc.relation | Xu, X., J. Cisewski-Kehe, S. B. Green et collab. 2019, ¿Finding cosmic voids and filament loops
using topological data analysis¿, Astronomy and Computing, vol. 27, doi:10.1016/j.ascom.
2019.02.003, p. 34¿52, ISSN 22131337. URL https://arxiv.org/abs/1811.08450. | |
dc.relation | Yèche, C., N. Palanque-Delabrouille, C.-A. Claveau et collab. 2020, ¿Preliminary target
selection for the desi quasar (qso) sample¿, doi:10.3847/2515-5172/abc01a. URL https:
//arxiv.org/abs/2010.11280. | |
dc.relation | Zel¿Dovich, Y., S. Shandarin et R. Sunyaev. 1970, ¿Gravitational Instability: An Approximate
Theory for Large Density Perturbations. Commentary¿, Astron. Astrophys., vol. 500, 1, p.
13¿20, ISSN 0004-6361. | |
dc.relation | Zhang, Y., X. Yang, A. Faltenbacher et collab. 2009, ¿The spin and orientation of dark matter
halos within cosmic filaments¿, Astrophys. J., vol. 706, 1, doi:10.1088/0004-637X/706/1/747,
p. 747¿761, ISSN 15384357. URL https://arxiv.org/abs/0906.1654. | |
dc.relation | Zhou, R., B. Dey, J. A. Newman et collab. 2022, ¿Target selection and validation of DESI
luminous red galaxies¿, doi:10.3847/1538-3881/aca5fb. URL http://arxiv.org/abs/2208.
08515http://dx.doi.org/10.3847/1538-3881/aca5fb. | |
dc.relation | Zou, H., J. Sui, S. Xue et collab. 2022, ¿Photometric redshifts and Galaxy Clusters for
DES DR2, DESI DR9, and HSC-SSP PDR3 Data¿, doi:10.1088/1674-4527/ac6416. URL
http://arxiv.org/abs/2203.17035http://dx.doi.org/10.1088/1674-4527/ac6416. | |
dc.relation | Zhou, R., J. A. Newman, K. S. Dawson et collab. 2020, ¿Preliminary target selection for the DESI luminous red galaxy (lrg) sample¿, doi:10.3847/2515-5172/abc0f4. URL https: //arxiv.org/abs/2010.11282. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Artificial Intelligence in astronomy: machine learning and deep learning approaches to DESI data | |
dc.type | Trabajo de grado - Doctorado | |