dc.contributorPachón García, Jorge
dc.contributorGarcía Baquero, Eliud
dc.contributorVillalba Rey, Deicy
dc.creatorSánchez Lozano, Karla Mindrey
dc.date.accessioned2023-04-25T13:40:11Z
dc.date.accessioned2023-09-06T21:38:01Z
dc.date.available2023-04-25T13:40:11Z
dc.date.available2023-09-06T21:38:01Z
dc.date.created2023-04-25T13:40:11Z
dc.date.issued2022
dc.identifierSanchéz Lozano, Karla M. (2022). Caracterización fenotípica de germoplasma de arroz (Oryza sativa L) por su respuesta bajo condiciones inducidas de subemergencia [Trabajo de grado, Universidad de los Llanos]. Repositorio digital Universidad de los Llanos. https://repositorio.unillanos.edu.co/handle/001/2869
dc.identifierhttps://repositorio.unillanos.edu.co/handle/001/2869
dc.identifierUniversidad de los Llanos
dc.identifierRepositorio digital Universidad de los Llanos
dc.identifierhttps://repositorio.unillanos.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8708330
dc.description.abstractLas inundaciones prolongadas junto con las variaciones climáticas y el deficiente drenaje de los suelos, generan condiciones de subemergencia que producen bajos porcentajes de germinación y un mal establecimiento de plantas en los cultivos de arroz. Por tal motivo y teniendo en cuenta que las variedades comerciales en Colombia no cuentan con tolerancia a inundaciones, se propuso determinar la respuesta a subemergencia en un panel de 120 genotipos pertenecientes a la colección de parentales del programa nacional de mejoramiento de arroz, en estados iniciales de desarrollo fenológico, mediante la evaluación de rasgos fenotípicos asociados con la tolerancia. Los genotipos mostraron diferencias significativas de supervivencia durante la germinación y el desarrollo vegetativo temprano en respuesta al estrés por inundación. Se identificaron tres genotipos (F 83, F-24, F-313) con tolerancia intermedia a la germinación anaerobia con porcentajes de supervivencia que variaron entre el 75,7% y el 76,7%. Adicional a esto, se identificó un genotipo (F-377) con tolerancia intermedia a la subemergencia durante el desarrollo vegetativo V4, el cual mostró un crecimiento limitado de brotes bajo el agua y una mejor recuperación en comparación a los genotipos susceptibles. Los genotipos identificados pueden considerarse fuentes promisorias de tolerancia a la inundación durante los estados iniciales del desarrollo fenológico para los programas de mejoramiento genético.
dc.languagespa
dc.publisherUniversidad de los Llanos
dc.publisherFacultad de Ciencias Básicas e Ingeniería
dc.publisherVillavicencio
dc.relationAfrin W, Nafis, MH, Hossain MA, islam, MM, Hossain MA. 2018. Responses of rice (Oryza sativa L.) genotypes to different levels of submergence. Comptes rendus biologies, 341(2):85-96.
dc.relationAlam R, Hummel M, Yeung E, Locke AM, Ignacio JCI, Baltazar MD, ... y Bailey‐ Serres J. 2020. Flood resilience loci SUBMERGENCE 1 and ANAEROBIC GERMINATION 1 interact in seedlings established underwater. Plant Direct, 4(7): e00240
dc.relationAnami, BS, Malvade N, Palaiah S. 2020. Classification of yield affecting biotic and abiotic paddy crop stresses using field images. Information Processing in Agriculture, 7(2), 272-285.
dc.relationAngaji S, Septiningsih EM, Mackill DJ, Ismail AM. 2010. QTLs associated with tolerance of anaerobic conditions during germination in rice (Oryza sativa L.). Euphytica 172:159–168.
dc.relationAzarin KV, Usatov AV, Kozyrev PI. 2017. Molecular Breeding of Submergence tolerant Rice. Annual Research & Review in Biology, 1-10.
dc.relationBaltazar MD, Ignacio JCI, Thomson MJ, Ismail AM, Mendioro MS, Septiningsih EM. 2019. QTL mapping for tolerance to anaerobic germination in rice from IR64 and the aus landrace Kharsu 80A. Breeding science, 69(2): 227-233.
dc.relationBhattacharjee S. 2008. Calcium-dependent signaling pathway in the heat-induced oxidative injury in Amaranthus lividus. Biologia Plantarum, 52(1):137-140.
dc.relationBhattacharjee S. 2008. Calcium-dependent signaling pathway in the heat-induced oxidative injury in Amaranthus lividus. Biologia Plantarum, 52(1):137-140.
dc.relationBecerra IC, Díaz AM, García ER, Giraldo JA, Maluendas AV, Quintero LE, Reina DM, Ortegón MR, Samacá HA, Viveros Js. 2018. Análisis situacional cadena productiva del arroz en Colombia. Bogotá: UPRA
dc.relationBailey- Serres J, Voesenek LACJ. 2009. Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59, 313–339.
dc.relationBailey- Serres J, Voesenek LACJ. 2009. Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59, 313–339.
dc.relationCatling D. 1992. Rice in deep water. London: MacMillan Press Ltd.
dc.relationColmer TD, Pedersen O. 2008. Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. New Phytologist, 177(4):918-926.
dc.relationColmer TD, Pedersen O. 2008. Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. New Phytologist, 177(4):918-926.
dc.relationColmer TD, Armstrong W, Greenway H, Ismail AM, Kirk GJ, Atwell BJ. 2014. Physiological mechanisms of flooding tolerance in rice: transient complete submergence and prolonged standing water. In Progress in botany pp. 255-307
dc.relationDANE-FEDEARROZ. 2019. Encuesta de Arroz Mecanizado (ENAM). Boletín técnico segundo semestres 2018. Departamento Administrativo Nacional de Estadística y Federación Nacional de Arroceros. Bogotá, Colombia.
dc.relationDANE-FEDEARROZ. 2019. Encuesta de Arroz Mecanizado (ENAM). Boletín técnico segundo semestres 2018. Departamento Administrativo Nacional de Estadística y Federación Nacional de Arroceros. Bogotá, Colombia.
dc.relationDANE-FEDEARROZ. 2021. Encuesta de Arroz Mecanizado (ENAM). Boletín técnico primer semestre 2021. Departamento Administrativo Nacional de Estadística y Federación Nacional de Arroceros. Bogotá, Colombi
dc.relationDarko AM, Ipinyomi SO, Abe A, Adjah KL., Aculey P, Kwame BR, Manneh B. 2021. Genetic variability for and tolerance to anaerobic germination in rice (Oryza sativa L.). Journal of Crop Improvement, 35(6):832-847
dc.relationDegiovanni V, Berrio LE, Charry RE. 2010. Origen, taxonomía, anatomía y morfología de la planta de arroz (Oryza sativa L). En: Degiovanni V, Martínez CP, Motta F(Editores). Producción Eco-Eficiente del arroz en América Latina. Tomo I. ISBN 978-958-694-103-7. p.50-53
dc.relationDinámica del sector arrocero de los llanos orientales de Colombia 1999 – 2011. FEDEARROZ – Fondo Nacional del Arroz. ISBN: 978-958-99277-2-4, primera edición: noviembre de 2011.
dc.relationDuque-Ortiz S, Hernández- Escobar NC, Ortiz-Bohórquez P, Toro-Hincapié A, Forero-Esquivel O, Pulido Castrillón AA, Ramos-Monroy HG, Días-Toro AM, Velásquez- Zabaleta MA. 2018. Línea base cadena productiva del cultivo de arroz. Bogotá: UPRA.
dc.relationDas KK, Panda D, Sarkar RK., Reddy JN, Ismail AM. 2009. Submergence tolerance in relation to variable floodwater conditions in rice. Environ. Exp. Bot. 66: 425–434
dc.relationElla ES, Dionisio‐Sese ML y Ismail AM. 2010. Proper management improves seedling survival and growth during early flooding in contrasting rice genotypes. Crop Science, 50(5), 1997-2008.
dc.relationElla ES, Dionisio-Sese ML, Ismail AM. 2011. Seed pre-treatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions. AoB PLANTS, 2011
dc.relationEmerick K, Ronald PC. 2019. Sub1 rice: Engineering rice for climate change. Cold Spring Harbor perspectives in biology, 11(12): 034637
dc.relationEmerick K, Ronald PC. 2019. Sub1 rice: Engineering rice for climate change. Cold Spring Harbor perspectives in biology, 11(12): 034637
dc.relationEmerick K, Ronald PC. 2019. Sub1 rice: Engineering rice for climate change. Cold Spring Harbor perspectives in biology, 11(12): 034637
dc.relationFINAGRO. 2020.Cultivo de arroz. Unidad de Gestión de Riesgos Agropecuarios UGRA
dc.relationFukao T, Xu K, Ronald PC, Bailey-Serres J. 2006. A variable cluster of ethylene response factor–like genes regulates metabolic and developmental acclimation responses to submergence in rice. The Plant Cell, 18(8): 2021-2034.
dc.relationFukao T, Bailey-Serres J. 2008. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proceedings of the National Academy of Sciences, 105(43): 16814-16819.
dc.relationFukao T, Yeung E, y Bailey-Serres J. 2011. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. The Plant Cell, 23(1): 412-427.
dc.relationGonzales AC. 2020. Plan de ordenamiento productivo: Análisis situacional de la cadena productiva del arroz. Bogotá: UPRA.
dc.relationGhosal S, Casal C, Quilloy FA., Septiningsih EM., Mendioro MS, Dixit S. 2019. Deciphering genetics underlying stable anaerobic germination in rice: phenotyping, QTL identification, and interaction analysis. Rice, 12(1): 1-15.
dc.relationGoswami S, Labar R, Paul A, Adak MK, Dey N. 2015 Physio-Biochemical and Genetic Exploration for Submergence Tolerance in Rice (Oryza sativa L.) Landraces with Special References to Sub1 Loci. American Journal of Plant Sciences, 6:1893- 1904
dc.relationGoswami S, Labar R, Paul A, Adak MK, Dey N. 2015 Physio-Biochemical and Genetic Exploration for Submergence Tolerance in Rice (Oryza sativa L.) Landraces with Special References to Sub1 Loci. American Journal of Plant Sciences, 6:1893- 1904
dc.relationGoswami S, Labar R, Paul A, Adak MK, Dey N. 2015 Physio-Biochemical and Genetic Exploration for Submergence Tolerance in Rice (Oryza sativa L.) Landraces with Special References to Sub1 Loci. American Journal of Plant Sciences, 6:1893- 1904
dc.relationHair JF, Anderson RE, Tatham RI, Black WC. 1992. Multivariate data analysis, 3rd Edition, New York, NY: MacMilliam Publishing Co.
dc.relationHattori Y, Nagai K, Furukawa S, Song XL, Kawano R, Sakakibara H. 2009. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 460:1026–1030
dc.relationHuang J, Takano T, Akita S. 2000. Expression of alpha-expansin genes in young seedlings of rice (Oryza sativa L.). Planta, 211: 467–473
dc.relationHsu SK, Tung CW. 2015. Genetic mapping of anaerobic germination-associated QTLs controlling coleoptile elongation in rice. Rice, 8(1):1-12.
dc.relationIDEAM. 2005. Atlas Climático de Colombia. Instituto de Hidrología, Meteoreología y Estudios Ambientales. Bogotá D.C
dc.relationIftekharuddaula KM, Ghosal S, Gonzaga ZJ, Amin A, Barman HN, Yasmeen R., ... Septiningsih, EM. 2016. Allelic diversity of newly characterized submergence tolerant rice (Oryza sativa L.) germplasm from Bangladesh. Genetic resources and crop evolution, 63(5), 859-867.
dc.relationsmail AM, Ella ES, Vergara GV, Mackill DJ. 2009. Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Annals of Botany, 103(2):197-209.
dc.relationIsmail AM. 2018. Submergence tolerance in rice: resolving a pervasive quandary. New Phytologist, 218(4):298-1300.
dc.relationIsmail AM. 2018. Submergence tolerance in rice: resolving a pervasive quandary. New Phytologist, 218(4):298-1300.
dc.relationIRRI. 2013. Standard evaluation system for rice (SES). International Rice Research Institute, Philippine, 1-45.
dc.relationJackson MB, Armstrong W. 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology, 1(03):274-287.
dc.relationJiang L, Liu S, Hou M, Tang J, Chen L, Zhai H, Wan J. 2006. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crops Research, 98:68–75
dc.relationJiang L, Liu S, Hou M, Tang J, Chen L, Zhai H, Wan J. 2006. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crops Research, 98:68–75
dc.relationKretzschmar T, Pelayo MAF, Trijatmiko KR, Gabunada LFM, Alam R, Jimenez R, Mendioro MS, Slamet-Loedin IH, Sreenivasulu N, Bailey-Serres J, Ismail AM, Mackill DJ, Septiningsih EM. 2015. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat Plants 1:15124
dc.relationKim SM, Reinke RF. 2018. Identification of QTLs for tolerance to hypoxia during germination in rice. Euphytica, 214(9):1-10.
dc.relationKuroha T, Ashikari M. 2020. Molecular mechanisms and future improvement of submergence tolerance in rice. Molecular Breeding, 40:1-14.
dc.relationKurokawa Y, Nagai K, Huan PD, Shimazaki K, Qu H, Mori Y, Toda Y, Kuroha T, Hayashi N, Aiga S, Itoh JI, Yoshimura A, Sasaki-Sekimoto Y, Ohta H, Shimojima M, Malik AI, Pedersen O, Colmer TD, AshikariM. 2018. Rice leaf hydrophobicity and 72 gas films are conferred by awax synthesis gene (LGF1) and contribute to flood tolerance. New Phyto 218(4):1558–1569.
dc.relationLee KW, Chen PW, Lu CA, Chen S, Ho T HD, Yu SM. 2009. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci. Signal. 2, ra61.
dc.relationLi JJ, Xiao YL, Xiao GY. 2012. Selection of submergence tolerant homozygous line by STS marker and twice submergence stress. Journal of Integrative Agriculture, 11(12), 1940-1947. doi.org/10.1016/S2095-3119(12)60450-X
dc.relationLuo FL, Nagel KA, Scharr H, Zeng B, Schurr U, Matsubara S. 2011. Recovery dynamics of growth, photosynthesis and carbohydrate accumulation after de submergence: a comparison between two wetland plants showing escape and quiescence strategies. Annals of Botany, 107(1):49-63.
dc.relationMa M, Cen W, Li R, Wang S, Luo J. 2020. The molecular regulatory pathways and metabolic adaptation in the seed germination and early seedling growth of rice in response to low O2 stress. Plants, 9(10):1363
dc.relationMackill DJ, Coffman WR, Garrity DP. 1996. Rainfed lowland rice improvement. Los Banos, Philippines: International Rice Research Institute. p. 242
dc.relationMackill DJ, Ismail AM, Singh U S., Labios RV, Paris TR. 2012. Development and rapid adoption of submergence-tolerant (Sub1) rice varieties. Advances in agronomy, 115:299-352.
dc.relationMackill DJ, Ismail AM, Singh U S., Labios RV, Paris TR. 2012. Development and rapid adoption of submergence-tolerant (Sub1) rice varieties. Advances in agronomy, 115:299-352.
dc.relationMasuduzzaman ASM, Haque M, Ahmed MME, Mohapatra CK. 2016. SSR marker based genetic diversity analysis of tidal and flood prone areas in rice (Oryza sativa L.). Journal of Biotechnology & Biomaterials, 6(3)
dc.relationMiro B, Ismail AM. 2013. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). Frontiers in plant science, 4:269
dc.relationMiro B, Longkumer T, Entila FD, Kohli A, Ismail AM. 2017. Rice seed germination underwater: Morpho-physiological responses and the bases of differential expression of alcoholic fermentation enzymes. Frontiers in plant science, 8:1857
dc.relationNeeraja CN, Maghirang-Rodriguez R, Pamplon A, Heuer S, Collard BC, Septiningsih EM, ... Mackill DJ. 2007. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theoretical and Applied Genetics, 115(6):767- 776.
dc.relationNiroula RK, Pucciariello C, Ho VT, Novi G, Fukao T, Perata P. 2012. SUB1A‐ dependent and‐independent mechanisms are involved in the flooding tolerance of wild rice species. The Plant Journal, 72(2):282-293.
dc.relationNishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M. 2012. Mechanisms for coping with submergence and waterlogging in rice. Rice, 5(1):2
dc.relationPathaichindachote W, Panyawut N, Sikaewtung K, Patarapuwadol S, Muangprom A. 2019. Genetic Diversity and Allelic Frequency of Selected Thai and Exotic Rice Germplasm Using SSR Markers. Rice Science, 26(6):393-403.
dc.relationPradhan B. 2015.Breeding for Submergence Tolerance in Rice (Oryza sativa L) And Its Management (Thesis of doctor). University of Calcutta.
dc.relationPradhan SK, Barik SR, Sahoo J, Pandit E, Nayak DK, Pani DR, Anandan, A. 2015. Comparison of Sub1 markers and their combinations for submergence tolerance and analysis of adaptation strategies of rice in rainfed lowland ecology. Comptes rendus biologies, 338(10):650-659.
dc.relationPanda D, Barik J. 2021. Flooding Tolerance in Rice: Focus on Mechanisms and Approaches. Rice Science, 28(1): 43-57
dc.relationPedersen O, Rich SM, Colmer TD. 2009. Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice. The Plant Journal, 58(1):147-156.
dc.relationPearce DM, Hall KC, Jackson MB.1992. The effects of oxygen, carbon dioxide and ethylene on ethylene biosynthesis in relation to shoot extension in seedlings of rice (Oryza sativa) and barnyard grass (Echinochloa oryzoides). Annals of Botany, 69(5):441-447.
dc.relationPeña-Castro JM. 2014. Respuesta molecular de las plantas ante el estrés por inundación: lecciones aprendidas del gen SUB1A. Revista fitotecnia mexicana, 37(4) :325-337.
dc.relationPucciariello C, Perata P. 2013. Quiescence in rice submergence tolerance: an evolutionary hypothesis. Trends in Plant Science, 18(7):377-381.
dc.relationPucciariello C, Perata P. 2013. Quiescence in rice submergence tolerance: an evolutionary hypothesis. Trends in Plant Science, 18(7):377-381.
dc.relationPucciariello C, Perata P. 2013. Quiescence in rice submergence tolerance: an evolutionary hypothesis. Trends in Plant Science, 18(7):377-381.
dc.relationRangel CH, JO, Sánchez CH, Lowy CP, Aguilar PM, Castillo A. 1995. Región de la Orinoquia. En: J. O.Rangel-Ch. (ed.) Colombia Diversidad Biótica 1. pp. 239-254. Instituto de Ciencias Naturales. Universidad Nacional de Colombia. Bogotá. D.C.
dc.relationSairam RK, Kumutha D, Ezhilmathi K, Deshmukh PS, Srivastava GC. 2008. Physiology and biochemistry of waterlogging tolerance in plants. Biologia plantarum, 52(3):401.
dc.relationSandhu N, Yadav S, Kumar A. 2020. Advances in Developing Multigene Abiotic and Biotic Stress-Tolerant Rice Varieties. In Abiotic Stress in Plants (p. 371). IntechOpen.
dc.relationSantibáñez AG, Castillo AS, Zavala HJ, Martínez OY, Hernández AM. 2009. Environmental Heterogeneity in a Xerophytic Shrubland. Boletín de la Sociedad Botánica de México, (85):71-79
dc.relationSarkar RK, Reddy JN, Sharma SG, Ismail AM. 2006. Physiological basis of submergence tolerance in rice and implications for crop improvement, Current Science, vol. 91 pg. 899-906
dc.relationSarkar RK, Bhattacharjee, B. 2011. Rice genotypes with SUB1 QTL differ in submergence tolerance, elongation ability during submergence and re-generation growth at re-emergence. Rice, 5(1):1-11.
dc.relationSarkar RK, Das KK, Panda D, Reddy JN, Patnaik SSC, Patra BC, Singh DP. 2014.Submergence tolerance in rice: Biophysical Constraints, Physiological basis and Identification of Donors. Central Rice Research Institute, Cuttck, India. p.36
dc.relationSamal R, Roy PS, Sahoo A, Kar MK, Patra BC, Marndi BC, Gundimeda JNR. 2018. Morphological and molecular dissection of wild rices from eastern India suggests distinct speciation between O. rufipogon and O. nivara populations. Scientific reports, 8(1):1-13.
dc.relationSeptiningsih EM, Pamplona AM, Sánchez DL, Neeraja CN, Vergara GV, Heuer S, Mackill DJ. 2009. Development of submergence-tolerant rice cultivars: The Sub1 locus and beyond. Annals of Botany, 103(2): 151-160.
dc.relationSeptiningsih EM, Collard BC, Heuer S, Bailey-Serres J, Ismail AM y Mackill, DJ. 2013a. Applying genomics tools for breeding submergence tolerance in rice. Translational genomics for crop breeding, 2:9-30
dc.relationSeptiningsih EM, Ignacio JC, Sendon PM, Sánchez DL, Ismail AM, Mackill DJ. 2013b. QTL mapping and confirmation for tolerance of anaerobic conditions during germination derived from the rice landrace Ma-Zhan Red. Theoretical and Applied Genetics, 126(5):1357-1366
dc.relationSeptiningsih EM, Mackill DJ. 2018. Genetics and breeding of flooding tolerance in rice. In Rice Genomics, Genetics and Breeding, 275-295
dc.relationSetter TL, Ramakrishanayya G, Ram PC, Singh BB, Mallik S, Roy JK, Kundu C, Laureles EV, Sarkarung S, Sarkar RK, Nayak SK. 1998. Physiology of rice: prospects for increasing tolerance to submergence. In: Proceedings of the International symposium on Rainfed Rice for sustainable food security. Central Rice Research Institute, Cuttack, India, pp. 349-369.
dc.relationSingh R. 2016. Assessment of Genetic Potential for Submergence Tolerance in Indica Rice (Orzo sativa L) (Thesis Master). Bihar Agricultural University, Sab our, Bhagalpur.
dc.relationToojinda T, Siangliw M, Tragoonrung S y Vanavichit A. 2003. Molecular genetics of submergence tolerance in rice: QTL analysis of key traits. Annals of Botany, 91(2), 243-253.
dc.relationXu K, Xu X, Fula T, Canlas P, Maghirang-Rodriguez R, Heuer S, ... Mackill DJ. 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 442(7103):705-708.
dc.relationYamauchi T, Colmer TD, Pedersen O, Nakazono M. 2018.Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiol 176(2):1118–1130.
dc.relationZhang M, Lu Q, Wu W, Niu X, Wang C, Feng Y, Xu Q, Wang S, Yuan X, Yu H, Wang Y, Wei X. 2017. Association mapping reveals novel genetic loci contributing to flooding tolerance during germination in indica rice. Front Plant Sci 8:678
dc.relationN/A
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsDerechos Reservados - Universidad de los Llanos, 2022
dc.titleCaracterización fenotípica de germoplasma de arroz (Oryza sativa L) por su respuesta bajo condiciones inducidas de subemergencia
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución