dc.contributorGrupo de Investigación Estructuras y Materiales - Gimeci
dc.creatorAbellán-García, Joaquín
dc.creatorNúñez López, Andrés Mauricio
dc.creatorTorres Castellanos, Nancy
dc.creatorFernández Gómez, Jaime
dc.date.accessioned2023-06-09T16:53:53Z
dc.date.accessioned2023-09-06T21:17:14Z
dc.date.available2023-06-09T16:53:53Z
dc.date.available2023-09-06T21:17:14Z
dc.date.created2023-06-09T16:53:53Z
dc.date.issued2019
dc.identifier0012-7353
dc.identifierhttps://repositorio.escuelaing.edu.co/handle/001/2403
dc.identifierhttps://doi.org/10.15446/dyna.v86n211.79596
dc.identifier2346-2183
dc.identifierhttps://revistas.unal.edu.co/index.php/dyna/article/view/79596
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8707288
dc.description.abstractUltra-high-performance concrete (UHPC) is the essential innovation in concrete research of the recent decades. However, because of the high contents of cement and silica fume used, the cost and environmental impact of UHPC is considerably higher than conventional concrete. The use of industrial byproducts as supplementary cementitious materials, in the case of recycled glass powder and fluid catalytic cracking catalyst residue (FC3R), as partial substitution of cement and silica fume allows to create a more ecological and cost-efficient UHPC. This research presents a study to determine the possibility of partial substitution of cement by FC3R in a previously optimized mixture of ultra-high-performance concrete with recycled glass. The results demonstrate that compressive strength values of 150 and 151 MPa without any heat treatment can be achieved, respectively, when replacing 11% and 15% of the cement with FC3R, for a determined amount of water and superplasticizer, compared to 158 MPa obtained for the reference UHPC without any FC3R content. The rheology of fresh UHPC is highly decreased by replacing cement particles with FC3R.
dc.description.abstractEl concreto de ultra altas prestaciones (UHPC) supone el máximo exponente en la investigación sobre concretos especiales en las últimas décadas. Sin embargo, debido a su elevado contenido en cemento y humo de sílice, el costo e impacto ambiental del UHPC es considerablemente superior al del concreto convencional. El empleo de co-productos industriales como materiales cementantes suplementarios, caso del polvo de vidrio reciclado y el residuo de craqueo catalítico (FC3R), en sustitución parcial del cemento y del humo de sílice permite crear un UHPC más respetuoso con el medioambiente y más eficiente en costo. Esta investigación presenta un estudio para determinar la posibilidad de sustitución parcial de cemento por FC3R en una mezcla previamente optimizada de UHPC que incorpora polvo de vidrio en su composición. Los resultados muestran que es posible alcanzar una resistencia de 150 y 151 MPa sin ningún tratamiento térmico al reemplazar un 11% y 15% del peso de cemento por FC3R respectivamente para una cantidad de agua y superplastificante determinadas, en comparación con los 158 MPa obtenidos para la muestra de referencia sin FC3R. La reología del UHPC se ve fuertemente afectada cuando se sustituye cemento por FC3R.
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherColombia
dc.relation93
dc.relation211
dc.relation84
dc.relation86
dc.relationN/A
dc.relationDYNA
dc.relationAbellan, J., Torres, N., Núñez, A. y Fernández, J., Influencia del exponente de Fuller, la relación agua conglomerante y el contenido en policarboxilato en concretos de muy altas prestaciones, en: IV Congreso Internacional de Ingenieria Civil, 2018.
dc.relationSoliman, N.A. and Tagnit-Hamou, A., Using particle packing and statistical approach to optimize eco-efficient ultra-high-performance concrete, ACI Mater. J., 114(6), pp. 847-858, 2017. DOI: 10.14359/51701001.
dc.relationGhafari, E., Costa, H., Nuno, E. and Santos, B., RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers, Constr. Build. Mater., 66(September), pp. 375-383, 2014. DOI: 10.1016/j.conbuildmat.2014.05.064
dc.relationSchmidt, C. and Schmidt, M., Whitetopping of asphalt and concrete pavements with thin layers of ultra-high-performance concrete - Construction and economic efficiency, in: 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, no. 19, M.S.E.F.C.G.S. Fröhlich and S. Piotrowski, Eds. Kassel University, Kassel, Germany: 2012, pp. 921-927.
dc.relationAbbas, S., Nehdi, M.L. and Saleem, M.A., Ultra-High performance concrete: mechanical performance, durability, sustainability and implementation challenges, Int. J. Concr. Struct. Mater., 10(3), pp. 271-295, 2016.
dc.relationNehdi, M., Abbas, S. and Soliman, A., Exploratory study of ultra-high performance fiber reinforced concrete tunnel lining segments with varying steel fiber lengths and dosages, Eng. Struct., 101(March), pp. 733-742, 2015. DOI: 10.1016/j.engstruct.2015.07.012.
dc.relationToledo-Filho, R.D., Koenders, E.A., Formagini, S. and Fairbairn, E.M., Performance assessment of ultra high performance fiber reinforced cementitious composites in view of sustainability performance assessment of ultra high performance fiber reinforced, Mater. Des., 36, pp. 880-888, 2012. DOI: 10.1016/j.matdes.2011.09.022
dc.relationAbellan, J., Torres, N., Núñez, A. and Fernández, J., Ultra high preformance fiber reinforced concrete: state of the art, applications and possibilities into the Latin American market, in: XXXVIII Jornadas Sudamericanas de Ingeniería Estructural, 2018.
dc.relationTayeh, B.A., Abu-Bakar, B.H., Megat-Johari, M.A. and Voo, Y.L., Utilization of Ultra-High Performance Fibre Concrete (UHPFC) for rehabilitation - A review, Procedia Eng., 54(December) 2013, pp. 525- 538, 2013.
dc.relationSoliman, N.A. and Tagnit-Hamou, A., Using glass sand as an alternative for quartz sand in UHPC, Constr. Build. Mater., 145, pp. 243-252, 2017. DOI: 10.1016/j.conbuildmat.2017.03.187
dc.relationKalny, M., Kvasnicka, V. and Komanec, J., First practical applications of UHPC in the Czech Republic, in: Proceedings of Hipermat 2016 - 4th International Symposium on UHPC and Nanotechnology for Construction Materials, 2016, pp. 147-148.
dc.relationTagnit-Hamou, A., Soliman, N.A. and Omran, A., Green Ultra-HighPerformance glass concrete, First International Interactive Symposium on UHPC, 3(1), pp. 1-10, 2016. DOI: 10.21838/uhpc.2016.35
dc.relationRichard, P. and Cheyrezy, M., Composition of reactive powder concretes Cem. Concr. Res., 25(7), pp. 1501-1511, 1995.
dc.relationDe Larrard, F. and Sedran, T., Mixture-proportioning of highperformance concrete, Cem. Concr. Res., 32(11), pp. 1699-1704, 2002.
dc.relationKou, S.C. and Xing, F., The effect of recycled glass powder and reject fly ash on the mechanical properties of fibre-reinforced Ultrahigh Performance Concrete, Hindawi Publ. Corp. Adv. Mater. Sci. Eng.,(May), 2012. DOI: 10.1155/2012/263243
dc.relationAbdulkareem, O.M., Ben-Fraj, A., Bouasker, M. and Khelidj, A., Effect of chemical and thermal activation on the microstructural and mechanical properties of more sustainable UHPC, Constr. Build. Mater., 169, pp. 567-577, 2018.
dc.relationGhafari, E., Costa, H. and Júlio, E., Statistical mixture design approach for eco- efficient UHPC, Cem. Concr. Compos., 55(September), pp. 17-25, 2015. DOI: 10.1016/j.cemconcomp.2014.07.016
dc.relationMeng, W., Samaranayake, V.A. and Khayat, K.H., Factorial design and optimization of UHPC with lightweight sand, ACI Mater. J., (February), 2018. DOI: 10.14359/51700995
dc.relationCamacho-Torregosa, E., Dosage optimization and bolted connections for UHPFRC ties, Thesis Dr., Polytechnic University of Valencia, Spain, 2013.
dc.relationAhmad, S., Hakeem, I. and Maslehuddin, M., Development of UHPC mixtures utilizing natural and industrial waste materials as partial replacements of silica fume and sand, The Scientific World Journal, vol. 2014, pp. 1-8, 2014. DOI: 10.1155/2014/713531
dc.relationVaitkevicius, V., Šerelis, E. and Hilbig, H., The effect of glass powder on the microstructure of ultra high performance concrete, 68, pp. 102- 109, 2014. DOI: 10.1016/j.conbuildmat.2014.05.101
dc.relationLi, W., Huang, Z., Zu, T., Shi, C., Duan, W.H. and Shah, S.P., Influence of nanolimestone on the hydration, mechanical strength, and autogenous shrinkage of ultrahigh-performance concrete, J. Mater. Civ. Eng., 28(1), pp. 1-9, 2016. DOI: 10.1061/(ASCE)MT.1943- 5533.0001327
dc.relationHuang, Z. and Cao, F., Effects of nano-materials on the performance of UHPC, 材料导报B:研究篇, 26(9), pp. 136-141, 2012.
dc.relationŠerelis, E., Vaitkevičius, V. and Kerševičius, V., Mechanical properties and microstructural investigation of Ultra-High Performance Glass Powder Concrete. Journal of Sustainable Architecture and Civil Engineering, 14(1), pp. 5-11, 2016. DOI: 10.5755/j01.sace.14.1.14478
dc.relationSoliman, N.A. and Tagnit-Hamou, A., Partial substitution of silica fume with fine glass powder in UHPC: filling the micro gap. Constr. Build. Mater., 139, pp. 374-383, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2017.02.084
dc.relationArizzi, A. and Cultrone, G., Comparing the pozzolanic activity of aerial lime mortars made with metakaolin and fluid catalytic cracking catalyst residue : a petrographic and physical-mechanical study, Constr. Build. Mater., 184, pp. 382-390, 2018. DOI: 10.1016/j.conbuildmat.2018.07.002
dc.relationCosa, J., Soriano, L., Borrachero, M.V., Reig, L., Payá, J. and Monzó, J.M., Influence of addition of Fluid Catalytic Cracking residue (FCC) and the SiO2 concentration in alkali-activated Ceramic Sanitary-Ware (CSW) Binders. Minerals, 8(4), pp. 1-18, 2018. DOI: 10.3390/min8040123
dc.relationTorres-Castellanos, N., Izquierdo-Garcia, S., Torres-Agredo, J. and Mejia-de Gutierrez, R., Resistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation, Ingeniería e Investigación, 34(1), pp. 11-16, 2014. DOI: 10.15446/ing.investig.v34n1.38730
dc.relationTorres-Castellanos, N. and Torres-Agredo, J., Uso del catalizador gastado de craqueo catalítico (FCC) como adición puzolánica - revisión, Ingeniería e Investigación, 30(2), pp. 35-42, 2010.
dc.relationTorres-Castellanos, N., Estudio en estado fresco y endurecido de concretos adicionados con catalizador de craqueo catalítico usado (FCC). Tesis Dr., Facultad de Ingeniería, Universidad Nacional de Colombia, Bogotá, Colombia, 2014
dc.relationEriksson, L., Johansson, E., Kettaneh-Wold, N., WikstrÄom, C. and Wold, S., Design of experiments: principles and applications. UMEA University, Sweden, 2000.
dc.relationUpasani, R.S. and Banga, A.K., Response surface methodology to investigate the iontophoretic delivery of tacrine hydrochloride, Pharm. Res., 21(12), pp. 2293-2299, 2004.
dc.relationLenth, R.V., Response-surface methods in R, using RSM. J. Stat. Softw., 32(7), pp. 1-17, 2012.
dc.relationMontgomery, D.C., Design and analysis of experiments. John Wiley & Sons, Inc, New Jersey, USA, 2005.
dc.relationMosaberpanah, M.A. and Eren, O., Statistical models for mechanical properties of UHPC using response surface methodology, Comput. Concr., 19(6), pp. 667-675, 2017.
dc.relationMosaberpanah, M.A. and Eren, O., Effect of quartz powder, quartz sand and water curing regimes on mechanical properties of UHPC using response surface modeling. Adv. Concr. Constr., 5(5), pp. 481- 492, 2017. DOI: 10.12989/acc.2017.5.5.481
dc.relationShaaban, M. and Ahmed, S., Development of Ultra-High Performance concrete jointed precast decks and concrete piles in integral abutment bridges, in: The First International Symposium on Jointless & Sustainable Bridges, May, 2016.
dc.relationShaaban, M. and Ahmed, S., Mechanical behaviour of Ultra-High Performance concrete obtained with different concrete constituents and mix designs, in: Resilient Infrastructure, June, 2016, pp. 702-1, 702-10.
dc.relationViet-Thein-An, V. and Ludwig, H.M., Proportioning optimization of UHPC containing rice husk ash and ground granulated blast-furnace slag, in: Proceedings of Hipermat 2012 - 3rd International Symposium on UHPC and Nanotechnology for Construction Materials, Schmidt, M., Fehling, E., Glotzbach, C., Fröhlich, S. and Piotrowski, S., Eds., Kassel University, Kassel, Germany, 2012, pp. 197-205.
dc.relationR Core Team, R: a language and environment for statistical computing. Vienna, Austria, [online]. 2018. Available at: https://www.Rproject.org/.
dc.relationFunk, J.E. and Dinger, D., Predictive process control of crowded particulate suspensions: applied to ceramic manufacturing. 1994.
dc.relationASTM and ASTM C1437, ‘Standard test method for flow of hydraulic cement mortar,’ American Society for Testing and Materials C-1437, no. C1437. ASTM, Conshohocken, PA, pp. 1-2, 2016.
dc.relationASTM, Standard test method for compressive strength of hydraulic cement mortars (Using 2-in . or [50-mm] Cube Specimens), American Society for Testing and Materials C-109/C109M, no. C109/C109M - 11b. ASTM, pp. 1-9, 2010.
dc.relationThe European Project Group, ‘The european guidelines for selfcompacting concrete,’ The European Guidelines for Self Compacting Concrete, no. May. EFNARC, 2005, 63 P.
dc.relationGómez, E. and Zornoza, M., El papel del catalizador usado de Craqueo Catalítico (FCC) como material puzolánico en el proceso de corrosión de armaduras de hormigón., Valencia, España, 2007.
dc.relationPuertas, F., Santos, H., Palacios, M. and Martínez-Ramírez, S., Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes. Adv. Cem. Res., 17(2), pp. 77-89, 2005
dc.relationKubens, S., Interaction of cement and admixtures and its influence on rheological properties. Thesis, Universität Weimar, Göttingen, Germany, 2010, 192 P.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.sourcehttps://revistas.unal.edu.co/index.php/dyna/article/view/79596
dc.titleEffect of FC3R on the properties of ultra-high-performance concrete with recycled glass
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución