dc.contributorGrupo de Investigación Estructuras y Materiales - Gimeci
dc.creatorAbellán-García, Joaquín
dc.creatorTorres, Nancy
dc.creatorSantofimio V, Maria
dc.date.accessioned2023-06-08T21:48:24Z
dc.date.accessioned2023-09-06T21:17:14Z
dc.date.available2023-06-08T21:48:24Z
dc.date.available2023-09-06T21:17:14Z
dc.date.created2023-06-08T21:48:24Z
dc.date.issued2020
dc.identifier2379-1357
dc.identifierhttps://repositorio.escuelaing.edu.co/handle/001/2400
dc.identifierhttps://doi.org/10.1520/ACEM20190224
dc.identifier2165-3984
dc.identifierhttps://www.astm.org/acem20190224.html
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8707287
dc.description.abstractOver the last 20 years, remarkable advances have taken place in the research on reactive powder concrete (RPC). However, because of the high contents of cement and silica fume (SF) usually used in those types of concrete, the cost and environmental impact of RPC is considerably higher than conventional concrete. Hence, the use of supplementary cementitious materials as partial substitution of cement and SF has been an object of great interest by the scientific community. However, the replacement of cement and SF can result in the deterioration of certain properties of RPC, such as the early strength; however, RPC usually needs great amounts of cement and SF. This work presents a study to analyze the effect of metakaolin (MK) as a partial substitute of cement in a previously optimized mixture of RPC using statistical tools such central composite design, main effect plot analysis, and response surface methodology. In addition to MK, supplementary cementitious materials such as SF, limestone powder and recycled glass powder, and fine Type III cement were used. Based on the laboratory experiments results and statistical analysis, it was concluded than MK develops a high activity in the hydration process of RPC, helping it reach high strength at early ages, such as 1 and 7 days, which may be of interest for applications such as the connection of prefabricated elements or accelerated bridge construction. However, the effect of the partial substitution of Type III cement by MK on 28-day compressive strength was nonsignificant. Moreover, the MK inclusion in RPC provides a significant decrease in workability as the amount of MK increases.
dc.description.abstractEn los últimos 20 años se han producido notables avances en la investigación sobre el hormigón reactivo en polvo (RPC). Sin embargo, debido a los elevados contenidos de cemento y humo de sílice (SF) que suelen emplearse en esos tipos de hormigón, el coste y el impacto medioambiental del RPC son considerablemente superiores a los del hormigón convencional. De ahí que el uso de materiales cementantes suplementarios como sustitución parcial del cemento y el SF haya sido objeto de gran interés por parte de la comunidad científica. Sin embargo, la sustitución del cemento y el SF puede provocar el deterioro de ciertas propiedades del RPC, como la resistencia temprana; además, el RPC suele necesitar grandes cantidades de cemento y SF. Este trabajo presenta un estudio para analizar el efecto del metacaolín (MK) como sustituto parcial del cemento en una mezcla previamente optimizada de RPC utilizando herramientas estadísticas como el diseño compuesto central, el análisis de parcelas de efectos principales y la metodología de superficie de respuesta. Además del MK, se utilizaron materiales cementantes suplementarios como SF, polvo de caliza y polvo de vidrio reciclado, y cemento fino de tipo III. Basándose en los resultados de los experimentos de laboratorio y el análisis estadístico, se concluyó que el MK desarrolla una alta actividad en el proceso de hidratación del RPC, ayudando a que alcance una alta resistencia a edades tempranas, como 1 y 7 días, lo que puede ser de interés para aplicaciones como la conexión de elementos prefabricados o la construcción acelerada de puentes. Sin embargo, el efecto de la sustitución parcial del cemento Tipo III por MK sobre la resistencia a compresión a 28 días no fue significativo. Además, la inclusión de MK en el EPR proporciona una disminución significativa de la trabajabilidad a medida que aumenta la cantidad de MK.
dc.languageeng
dc.publisherASTM International
dc.relation386
dc.relation368
dc.relation1
dc.relationN/A
dc.relationAdvances in Civil Engineering Materials
dc.relationP. Richard and M. Cheyrezy, “Composition of Reactive Powder Concretes,” Cement and Concrete Research 25, no. 7 (October 1995): 1501–1511, https://doi.org/10.1016/0008-8846(95)00144-2
dc.relationJ. Song and S. Liu, “Properties of Reactive Powder Concrete and Its Application in Highway Bridge,” Advances in Materials Science and Engineering 2016 (February 2016): 5460241, https://doi.org/10.1155/2016/5460241
dc.relationJ. Abellan, N. Torres, A. Núnez, and J. Fernández, ˜ “Ultra High Preformance Fiber Reinforced Concrete: State of the Art, Applications and Possibilities into the Latin American Market” (paper presentation, 38th Jornadas Sudamericanas de Ingeniería Estructural, Lima, Peru, October 24, 2018).
dc.relationN. A. Soliman and A. Tagnit-Hamou, “Using Particle Packing and Statistical Approach to Optimize Eco-Efficient UltraHigh-Performance Concrete,” ACI Materials Journal 114, no. 6 (November 2017): 847–858, https://doi.org/10.14359/ 51701001
dc.relationE. Ghafari, H. Costa, and E. Júlio, “RSM-Based Model to Predict the Performance of Self-Compacting UHPC Reinforced with Hybrid Steel Micro-fibers,” Construction and Building Materials 66 (June 2014): 375–383, https://doi.org/10.1016/j. conbuildmat.2014.05.064
dc.relationC. Schmidt and M. Schmidt, “‘Whitetopping’ of Asphalt and Concrete Pavements with Thin Layers of Ultra-HighPerformance Concrete – Construction and Economic Efficiency,” in Third International Symposium on UHPC and Nanotechnology for High Performance Construction Materials (Kassel, Germany: Kassel University Press, 2012), 921–928.
dc.relationS. Abbas, M. L. Nehdi, and M. A. Saleem, “Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges,” International Journal of Concrete Structures and Materials 10, no. 3 (June 2016): 271–295, https://doi.org/10.1007/s40069-016-0157-4
dc.relationM. L. Nehdi, S. Abbas, and A. M. Soliman, “Exploratory Study of Ultra-High Performance Fiber Reinforced Concrete Tunnel Lining Segments with Varying Steel Fiber Lengths and Dosages,” Engineering Structures 101 (August 2015): 733–742, https://doi.org/10.1016/j.engstruct.2015.07.012
dc.relationR. D. Toledo-Filho, E. A. B. Koenders, S. Formagini, and E. M. R. Fairbairn, “Performance Assessment of Ultra High Performance Fiber Reinforced Cementitious Composites in View of Sustainability,” Materials & Design 36 (April 2012): 880–888, https://doi.org/10.1016/j.matdes.2011.09.022
dc.relationJ. Abellan, N. Torres, A. Núnez, and J. Fernández, ˜ “Influencia del exponente de Fuller, la relaci´on agua conglomerante y el contenido en policarboxilato en concretos de muy altas prestaciones” (paper presentation, Fourth Congreso Internacional de Ingenieria Civil, Havana, Cuba, November 30, 2018).
dc.relationN. A. Soliman and A. Tagnit-Hamou, “Using Glass Sand as an Alternative for Quartz Sand in UHPC,” Construction and Building Materials 145 (August 2017): 243–252, https://doi.org/10.1016/j.conbuildmat.2017.03.187
dc.relationM. Kalny, V. Kvasnicka, and J. Komanec, “First Practical Applications of the UHPC in the Czech Republic,” in Fourth International Symposium on UHPC and Nanotechnology for High Performance Construction Materials (Kassel, Germany: Kassel University Press, 2016), 147–148.
dc.relationA. Tagnit-Hamou, N. Soliman, and A. Omran, “Green Ultra-High-Performance Glass Concrete” (paper presentation, First International Interactive Symposium on UHPC, Des Moines, IA, July 18, 2016).
dc.relationJ. Abellán, A. Núnez, and S. Arango, ˜ “Pedestrian Bridge of UNAL in Manizales: A New UPHFRC Application in the Colombian Building Market,” in Fifth International Symposium on UHPC and Nanotechnology for High Performance Construction Materials (Kassel, Germany: Kassel University Press, 2020), 43–44.
dc.relationF. de Larrard and T. Sedran, “Mixture-Proportioning of High-Performance Concrete,” Cement and Concrete Research 32, no. 11 (November 2002): 1699–1704, https://doi.org/10.1016/S0008-8846(02)00861-X
dc.relationS. C. Kou and F. Xing, “The Effect of Recycled Glass Powder and Reject Fly Ash on the Mechanical Properties of FibreReinforced Ultrahigh Performance Concrete,” Advances in Materials Science and Engineering 2012 (May 2012): 263243, https://doi.org/10.1155/2012/263243
dc.relationC. Shi, Z. Wu, J. Xiao, D. Wang, Z. Huang, and Z. Fang, “A Review on Ultra High Performance Concrete: Part I. Raw Materials and Mixture Design,” Construction and Building Materials 101 (December 2015): 741–751, https://doi.org/10. 1016/j.conbuildmat.2015.10.088
dc.relationW. Li, Z. Huang, T. Zu, C. Shi, W. H. Duan, and S. P. Shah, “Influence of Nanolimestone on the Hydration, Mechanical Strength, and Autogenous Shrinkage of Ultrahigh-Performance Concrete,” Journal of Materials in Civil Engineering 28, no. 1 (January 2016): 04015068, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001327
dc.relationI. Ferdosian, A. Camões, and M. Ribeiro, “High-Volume Fly Ash Paste for Developing Ultra-High Performance Concrete (UHPC),” Ciência & Tecnologia dos Materiais 29, no. 1 (January–April 2017): e157–e161, https://doi.org/10.1016/j.ctmat. 2016.10.001
dc.relationJ. Abellán García, J. Fernandez G´omez, and N. Torres Castellanos, “Properties Prediction of Environmentally Friendly Ultra-High-Performance Concrete Using Artificial Neural Networks,” European Journal of Environmental and Civil Engineering 24, no. 6 (May 2020): https://doi.org/10.1080/19648189.2020.1762749
dc.relationJ. Abellán-García, “Four-Layer Perceptron Approach for Strength Prediction of UHPC,” Construction and Building Materials 256 (May 2020): 119465, https://doi.org/10.1016/j.conbuildmat.2020.119465
dc.relationJ. Abellán, A. Núnez, N. Torres, and J. Fernández, ˜ “Development of Cost-Efficient UHPC with Local Materials in Colombia,” in Fifth International Symposium on UHPC and Nanotechnology for High Performance Construction Materials (Kassel, Germany: Kassel University Press, 2020), 97–98.
dc.relationJ. Abellán, N. Torres, A. Núnez, and J. Fernández, ˜ “Quality Optimization of Low-Cost UHPC Using Micro Limestone Powder and Glass Flour,” Computers and Concrete (in press).
dc.relationJ. Abellán, J. Fernández, N. Torres, and A. Núnez, ˜ “Statistical Optimization of Ultra-High-Performance Glass Concrete,” ACI Materials Journal 117, no. 1 (January 2020): 243–254, https://doi.org/10.14359/51720292
dc.relationJ. Abellán-García, A. Núnez-L´ ˜ opez, N. Torres Castellanos, and J. Fernández-G´omez, “Factorial Design of Reactive Concrete Powder Containing Electric Arc Slag Furnace and Recycled Glass Powder,” Dyna 87, no. 213 (April–June 2020): 42–51, https://doi.org/10.15446/dyna.v87n213.82655
dc.relationJ. Abellán-García, A. Núnez-L´ ˜ opez, N. Torres Castellanos, and J. Fernández-G´omez, “Effect of FC3R on the Properties of Ultra-High-Performance Concrete with Recycled Glass,” Dyna 86, no. 211 (October–December 2019): 84–93, https://doi. org/10.15446/dyna.v86n211.79596
dc.relationB. Rai and K. Wille, “Development and Testing of High / Ultra-High Early Strength Concrete,” in Fifth International Symposium on UHPC and Nanotechnology for High Performance Construction Materials (Kassel, Germany: Kassel University Press, 2020), 7–8.
dc.relationN. Torres Castellanos, J. Torres Agredo, and R. Mejía, “Resistance of Blended Concrete Containing an Industrial Petrochemical Residue to Chloride Ion Penetration and Carbonation,” Ingeniería e Investigacion 34, no. 1 (April 2014): 11–16, https://doi.org/10.15446/ing.investig.v34n1.38730
dc.relationN. Torres Castellanos, J. Torres Agredo, and R. Mejía, “Resistance of Blended Concrete Containing an Industrial Petrochemical Residue to Chloride Ion Penetration and Carbonation,” Ingeniería e Investigacion 34, no. 1 (April 2014): 11–16, https://doi.org/10.15446/ing.investig.v34n1.38730
dc.relationE. C. Torregrosa, “Dosage Optimization and Bolted Connections for UHPFRC Ties” (PhD thesis, Polytechnic University of Valencia, 2013).
dc.relationS. Ahmad, I. Hakeem, and M. Maslehuddin, “Development of UHPC Mixtures Utilizing Natural and Industrial Waste Materials as Partial Replacements of Silica Fume and Sand,” Advances in Materials Science and Engineering 2014 (August 2014): 713531, https://doi.org/10.1155/2014/108797
dc.relationV. Vaitkevičius, E. Šerelis, and H. Hilbig, “The Effect of Glass Powder on the Microstructure of Ultra High Performance Concrete,” Construction and Building Materials 68 (October 2014): 102–109, https://doi.org/10.1016/j.conbuildmat.2014. 05.101
dc.relationZ. Huang and F. Cao, “Effects of Nano-materials on the Performance of UHPC,” Materials Review 26, no. 9 (2012): 136– 141.
dc.relationE. Šerelis, V. Vaitkevičius, and V. Kerševičius, “Mechanical Properties and Microstructural Investigation of Ultra-High Performance Glass Powder Concrete,” Journal of Sustainable Architecture and Civil Engineering 14, no. 1 (June 2016): 5– 11, https://doi.org/10.5755/j01.sace.14.1.14478
dc.relationN. A. Soliman and A. Tagnit-Hamou, “Partial Substitution of Silica Fume with Fine Glass Powder in UHPC: Filling the Micro Gap,” Construction and Building Materials 139 (May 2017): 374–383, https://doi.org/10.1016/j.conbuildmat.2017. 02.084
dc.relationA. Arizzi and G. Cultrone, “Comparing the Pozzolanic Activity of Aerial Lime Mortars Made with Metakaolin and Fluid Catalytic Cracking Catalyst Residue: A Petrographic and Physical-Mechanical Study,” Construction and Building Materials 184 (September 2018): 382–390, https://doi.org/10.1016/j.conbuildmat.2018.07.002
dc.relationP. K. Mehta, “Global Concrete Industry Sustainability,” ACI Concrete International 31, no. 2 (February 2009): 45–48.
dc.relationA. Tafraoui, G. Escadeillas, S. Lebaili, and T. Vidal, “Metakaolin in the Formulation of UHPC,” Construction and Building Materials 23, no. 2 (February 2009): 669–674, https://doi.org/10.1016/j.conbuildmat.2008.02.018
dc.relationZ. Li and P. R. Rangaraju, “Development of UHPC Using Ternary Blends of Ultra-Fine Class F Fly Ash, Meta-kaolin and Portland Cement” (paper presentation, First International Interactive Symposium on UHPC, Des Moines, IA, July 18, 2016).
dc.relationR Core Team, “R: A Language and Environment for Statistical Computing,” The R Foundation, 2018, http://web.archive. org/web/20200604224634/https://www.r-project.org/
dc.relationT. Roth, “Working with the qualityTools Package,” Quality Tools in R, 2017, http://web.archive.org/web/ 20200604225008/http://www.r-qualitytools.org/
dc.relationStandard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM C618-19 (West Conshohocken, PA: ASTM International, approved January 1, 2019), https://doi.org/10.1520/C0618-19
dc.relationL. Eriksson, E. Johansson, N. Kettaneh-Wold, C. Wikström, and S. Wold, Design of Experiments: Principles and Applications (Umeå, Sweden: Umetrics Academy, 2000).
dc.relationR. S. Upasani and A. K. Banga, “Response Surface Methodology to Investigate the Iontophoretic Delivery of Tacrine Hydrochloride,” Pharmaceutical Research 21, no. 12 (December 2004): 2293–2299, https://doi.org/10.1007/s11095- 004-7682-6
dc.relationD. C. Montgomery, Design and Analysis of Experiments (Hoboken, NJ: Wiley, 2006).
dc.relationS. Branchu, R. T. Forbes, P. York, and H. Nyqvist, “A Central Composite Design to Investigate the Thermal Stabilization of Lysozyme,” Pharmaceutical Research 16, no. 5 (May 1999): 702–708, https://doi.org/10.1023/A:1018876625126
dc.relationJ. E. Funk and D. Dinger, Predictive Process Control of Crowded Particulate Suspensions: Applied to Ceramic Manufacturing (Berlin, Germany: Springer Science & Business Media, 2013).
dc.relationStandard Test Method for Flow of Hydraulic Cement Mortar, ASTM C1437-15 (West Conshohocken, PA: ASTM International, approved December 1, 2015), https://doi.org/10.1520/C1437-15
dc.relationStandard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM C109/C109M-20a (West Conshohocken, PA: ASTM International, approved February 15, 2020), https://doi.org/ 10.1520/C0109_C0109M-20A
dc.relationK. N. Bharath, G. B. Manjunatha, and K. Santhosh, “Failure Analysis and the Optimal Toughness Design of Sheep–Wool Reinforced Epoxy Composites,” in Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, ed. M. Jawaid, M. Thariq, and N. Saba (Sawston, UK: Woodhead Publishing, 2019), 97–107, https://doi. org/10.1016/B978-0-08-102293-1.00005-X
dc.relationJ. C. Restrepo Gutierrez, O. J. Restrepo Baena, and I. Tob´on, “Efectos de la adici´on de metacaolín en el cemento p´ortland,” Dyna 73, no. 150 (November 2006): 131–141.
dc.relationJ. J. Brooks and M. A. Johari, “Effect of Metakaolin on Creep and Shrinkage of Concrete,” Cement and Concrete Composites 23, no. 6 (December 2001): 495–502, https://doi.org/10.1016/S0958-9465(00)00095-0
dc.relationN. Torres Castellanos, “Estudio en estado fresco y endurecido de concretos adicionados con catalizador de craqueo catalítico usado (FCC)” (PhD thesis, Universidad Nacional de Colombia, 2014).
dc.relationF. Puertas, H. Santos, M. Palacios, and S. Martínez-Ramírez, “Polycarboxylate Superplasticiser Admixtures: Effect on Hydration, Microstructure and Rheological Behaviour in Cement Pastes,” Advances in Cement Research 17, no. 2 (April 2005): 77–89, https://doi.org/10.1680/adcr.2005.17.2.77
dc.relationS. Kubens, Interaction of Cement and Admixtures and Its Influence on Rheological Properties (Göttingen, Germany: Cuvillier Verlag, 2010).
dc.relationM. Heikal, M. S. Morsy, and I. Aiad, “Effect of Polycarboxylate Superplasticizer on Hydration Characteristics of Cement Pastes Containing Silica Fume,” Ceramics – Silikáty 50, no. 1 (January 2006): 5–14.
dc.relationK. Wille, A. E. Naaman, S. El-Tawil, and G. J. Parra-Montesinos, “Ultra-High Performance Concrete and Fiber Reinforced Concrete: Achieving Strength and Ductility without Heat Curing,” Materials and Structures 45, no. 3 (March 2012): 309–324, https://doi.org/10.1617/s11527-011-9767-0
dc.relationF. de Larrard, Concrete Mixture Proportioning: A Scientific Approach (London: CRC Press, 1999), https://doi.org/10.1201/ 9781482272055
dc.relationThe Self-Compacting Concrete European Project Group, The European Guidelines for Self-Compacting Concrete (Brussels, Belgium: International Bureau for Precast Concrete, 2005).
dc.relationC.-S. Poon, L. Lam, S. C. Kou, Y.-L. Wong, and R. Wong, “Rate of Pozzolanic Reaction of Metakaolin in HighPerformance Cement Pastes,” Cement and Concrete Research 31, no. 9 (September 2001): 1301–1306, https://doi.org/ 10.1016/S0008-8846(01)00581-6
dc.relationJ. M. Khatib and S. Wild, “Pore Size Distribution of Metakaolin Paste,” Cement and Concrete Research 26, no. 10 (October 1996): 1545–1553, https://doi.org/10.1016/0008-8846(96)00147-0
dc.relationV. M. Malhotra and P. K. Mehta, High-Perfomance, High-Volume Fly Ash Concrete: Materials, Mixture Proportioning, Properties, Construction Practice, and Case Histories (Ottawa, Canada: Supplementary Cementing Materials for Sustainable Development, 2002).
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourcehttps://www.astm.org/acem20190224.html
dc.titleAnalysis of metakaolin as partial substitution of ordinary portland cement in reactive powder concrete
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución