dc.contributorGrupo de Investigación Estructuras y Materiales - Gimeci
dc.creatorAbellán-García, Joaquín
dc.creatorNúñez López, Andrés Mauricio
dc.creatorTorres Castellanos, Nancy
dc.creatorFernández Gómez, Jaime
dc.date.accessioned2023-06-09T16:30:54Z
dc.date.accessioned2023-09-06T21:16:37Z
dc.date.available2023-06-09T16:30:54Z
dc.date.available2023-09-06T21:16:37Z
dc.date.created2023-06-09T16:30:54Z
dc.date.issued2020
dc.identifier0012-7353
dc.identifierhttps://repositorio.escuelaing.edu.co/handle/001/2402
dc.identifierhttp://doi.org/10.15446/dyna.v87n213.82655
dc.identifier2346-2183
dc.identifierhttps://revistas.unal.edu.co/index.php/dyna/article/view/82655
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8707176
dc.description.abstractThe main objective of this research is to develop an optimized mixture of reactive powder concrete (RPC) containing supplementary cementitious materials (SCM), such as Electric Arc Slag Furnace (EASF), and Recycled Glass Powder (RGP) among others, through a factorial design. Accurate polynomial regressions were adjusted between considered factors and obtained responses such spread flow and compressive strength at different ages of the concrete. A multi-objective algorithm was executed to reach an eco-friendly mixture with the proper flow, the highest compressive strength, while simultaneously having the minimum content of cement. The experimental verification of this mathematical optimization demonstrated that the use of 621 kg/m3 of ASTM Type HE cement, with a maximum content of 100 kg/m3 of silica fume, should be considered the most appropriate amount to be employed in the RCP mixture to achieve a value of compressive strength over 150 MPa and a self-compacting mixture.
dc.description.abstractEl objetivo principal de esta investigación es desarrollar una mezcla optimizada de concreto de polvos reactivos (RPC) que contenga materiales cementícios suplementarios (SCM), como la escoria siderúrgica de arco eléctrico (EASF) y el polvo de vidrio reciclado (RGP) entre otros, utilizando el diseño factorial. Se calcularon diferentes regresiones polinómicas para predecir con precisión las variables respuesta (flujo estático y resistencia a compresión a distintas edades) en función de los factores considerados. A través de un algoritmo multiobjetivo, se determinó la mezcla que alcance la resistencia y flujo estático adecuados con un contenido mínimo de cemento. La verificación experimental de esta optimización matemática mostró que con 621 kg/m3 de cemento ASTM Tipo HE, y un contenido máximo de 100 kg/m3 de humo de sílice, se puede alcanzar una resistencia a compresión superior a los 150 MPa en un concreto, además, autocompactante.
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherColombia
dc.relation51
dc.relation213
dc.relation42
dc.relation87
dc.relationN/A
dc.relationDYNA
dc.relationRichard, P. and Cheyrezy, M., Composition of reactive powder concretes. Cem. Concr. Res., 25(7), pp. 1501-1511, 1995.
dc.relationSong, J. and Liu, S., Properties of reactive powder concrete and its application in highway bridge, Adv. Mater. Sci. Eng., 2016, 2016. DOI: 10.1155/2016/5460241
dc.relationAbbas, S., Nehdi, M.L. and Saleem, M.A., Ultra-High performance concrete: mechanical performance, durability, sustainability and implementation challenges, Int. J. Concr. Struct. Mater., 10(3), pp. 271-295, 2016. DOI: 10.1007/s40069-016-0157-4
dc.relationJammes, F., Cespedes, X. and Resplendino, J., Design of Offshore wind turbines, RILEM-fib-AFGC Int. Symp. Ultra-High Perform. Fibre-Reinforced Concr. UHPFRC 2013(1), pp. 443-452, 2013.
dc.relationTagnit-Hamou, A., Soliman, N.A. and Omran, A., Green Ultra-highperformance glass concrete, First International Interactive Symposium on UHPC, 3(1), pp. 1-10, 2016. DOI: 10.21838/uhpc.2016.35
dc.relationDe Larrard, F. and Sedran, T., Mixture-proportioning of highperformance concrete, Cem. Concr. Res., 32(11), pp. 1699-1704, 2002. DOI:10.1016/S0008-8846(02)00861-X
dc.relationMeng, W., Samaranayake, V.A. and Khayat, K.H., Factorial design and optimization of UHPC with lightweight sand, ACI Mater. J.(February), 2018. DOI: 10.14359/51700995
dc.relationAbdulkareem, O.M., Ben Fraj, A., Bouasker, M. and Khelidj, A., Effect of chemical and thermal activation on the microstructural and mechanical properties of more sustainable UHPC, Constr. Build. Mater., 169, pp. 567-577, 2018. DOI: 10.1016/j.conbuildmat.2018.02.214
dc.relationGhanem, H. and Obeid, Y., The Effect of steel fibers on the rheological and mechanical properties of self compacting concrete, Eur. Sci. J., 11(21), pp. 85-98, 2015.
dc.relationLi, W., Huang, Z., Zu, T., Shi, C., Duan, W.H. and Shah, S.P., Influence of Nanolimestone on the hydration, mechanical strength, and autogenous shrinkage of ultrahigh-performance concrete, J. Mater. Civ. Eng., 28(1), pp. 1-9, 2016. DOI: 10.1061/(ASCE)MT.1943-5533.0001327
dc.relationHuang, Z. and Cao, F., Effects of nano-materials on the performance of UHPC, 材料导报 研究篇, 26(9), pp. 136-141, 2012.
dc.relationCamacho, E., López, J.A. and Serna, P., Definition of three levels of performance for UHPFRC-VHPFRC with available materials, in: Proceedings of Hipermat 2012, 3rd International Symposium on UHPC and Nanotechnology for Construction Materials, Kassel Uni., Kassel, Germany, 2012, pp. 249-256.
dc.relationCamacho-Torregosa, E., Dosage optimization and bolted connections for UHPFRC ties, PhD Thesis, Polytechnic University of Valencia, Spain, 2013.
dc.relationVan Tuan, N., Ye, G., Van Breugel, K., Fraaij, A.L.A. and Danh, B., The study of using rice husk ash to produce ultra high performance concrete, Constr. Build. Mater., 25(4), pp. 2030-2035, 2011. DOI: 10.1016/j.conbuildmat.2010.11.046
dc.relationVan Tuan, N., Ye, G. and Van Breugel, K., Mitigation of early age shrinkage of ultra high performance concrete by using rice husk ash, in: Proceedings of Hipermat 2012, 3rd International Symposium on UHPC and Nanotechnology for Construction Materials., Kassel Uni., 2012, pp. 341-348
dc.relationSoliman, N.A. and Tagnit-Hamou, A., Partial substitution of silica fume with fine glass powder in UHPC: filling the micro gap. Constr. Build. Mater., 139, pp. 374-383, 2017. DOI: 10.1016/j.conbuildmat.2017.02.084
dc.relationSoliman, N.A. and Tagnit-Hamou, A., Using glass sand as an alternative for quartz sand in UHPC, Constr. Build. Mater., 145, pp. 243-252, 2017. DOI: 10.1016/j.conbuildmat.2017.03.187
dc.relationYu, R., Tang, P., Spiesz, P. and Brouwers, H.J.H., A study of multiple effects of nano-silica and hybrid fibres on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) incorporating waste bottom ash (WBA), Constr. Build. Mater. J., 60(June), pp. 98- 110, 2014. DOI: 10.1016/j.conbuildmat.2014.02.059
dc.relationYu, R., Spiesz, P. and Brouwers, H.J.H., Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC), Cem. Concr. Res., 56, pp. 29-39, 2014. DOI: 10.1016/j.cemconres.2013.11.002
dc.relationFunk, J.E. and Dinger, D., Predictive process control of crowded particulate suspensions: applied to ceramic manufacturing, Springer Science, New York, USA, 1994.
dc.relationRoth, T., Working with the quality. Tools package, 2016. [Online]. Available at: http://www.r-qualitytools.org.
dc.relationAbellan, J., Torres, N., Núñez, A. y Fernández, J., Influencia del exponente de Fuller, la relación agua conglomerante y el contenido en policarboxilato en concretos de muy altas prestaciones, en: IV Congreso Internacional de Ingeniería Civil, La Habana (Cuba), 2018.
dc.relationASTM, ‘Standard test method for flow of hydraulic cement mortar,’ American Society for Testing and Materials C1437. Conshohocken, PA, USA, 2016, pp. 1-2
dc.relationASTM, ‘Standard Test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] cube specimens),’ American Society for Testing and Materials C109/C109M - 11b. West Conshohocken, PA, USA, 2010, pp. 1-9.
dc.relationLenth, R.V., Response-surface methods in R, using rsm, J. Stat. Softw., 32(7), pp. 1-17, 2012.
dc.relationRaviselvan, R.J., Ramanathan, K., Perumal, P. and Thansekhar, M.R., Response surface methodology for optimum hardness of TiN on steel substrate, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 9(12), pp. 1331-1337, 2015.
dc.relationGhafari, E., Costa, H., Nuno, E. and Santos, B., RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers, Constr. Build. Mater., 66(September), pp. 375-383, 2014. DOI: 10.1016/j.conbuildmat.2014.05.064
dc.relationAbellán, J., Fernández, J.A., Torres, N. and Núñez, A.M., Statistical Optimization of ultra-high-performance glass concrete, ACI Mater. J., 117(M), pp. 243-254, 2020. DOI: 10.14359/51720292
dc.relationBranchu, S., Forbes, R.T., York, P. and Nyqvist, H.N., A central composite design to investigate the thermal stabilization of lysozyme, Pharmaceutical Research, 16(5), pp. 702-708, 1999. DOI: 10.1023/a:1018876625126
dc.relationR Core Team, R: A Language and Environment for Statistical Computing. Vienna, Austria, 2018.
dc.relationMontgomery, D.C., Design and analysis of experiments. John Wiley & Sons, Inc, New Jersey, USA, 2005.
dc.relationThe European Project Group, ‘The European Guidelines for SelfCompacting Concrete,’ Eur. Guidel. Self Compact. Concrete, (May), 2005, 63 P.
dc.relationPuertas, F., Santos, H., Palacios, M. and Martínez-Ramírez, S., Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes, Adv. Cem. Res., 17(2), pp. 77-89, 2005. DOI: 10.1680/adcr.17.2.77.65044
dc.relationKubens, S., Interaction of cement and admixtures and its influence on rheological properties, [online]. 49(0), Göttingen, 2010. Available at: https://cuvillier.de/de/shop/publications/752
dc.relationDerringer, G. and Suich, R., Simultaneous Optimization of several response variables. J. Qual. Technol., 21(4), pp. 214-219, 1980. DOI: 10.1080/00224065.1980.11980968
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.sourcehttps://revistas.unal.edu.co/index.php/dyna/article/view/82655
dc.titleFactorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución