dc.contributorGrupo de Investigación Estructuras y Materiales - Gimeci
dc.creatorClavijo Ramírez, Jorge Enrique
dc.creatorSalas, Yecid
dc.creatorSánchez, Sandra Esperanza
dc.date.accessioned2023-06-08T17:19:49Z
dc.date.accessioned2023-09-06T21:16:33Z
dc.date.available2023-06-08T17:19:49Z
dc.date.available2023-09-06T21:16:33Z
dc.date.created2023-06-08T17:19:49Z
dc.date.issued2021
dc.identifier1742-6588
dc.identifierhttps://repositorio.escuelaing.edu.co/handle/001/2398
dc.identifier10.1088/1742-6596/2046/1/012027
dc.identifier1742-6596
dc.identifierhttps://iopscience.iop.org/article/10.1088/1742-6596/2046/1/012027
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8707167
dc.description.abstractDespite their common origin, experiments show that acoustic and electromagnetic emissions evolve in different ways during the fracture processes of brittle materials. It is common to find peaks of acoustic activity without the presence of electromagnetic emissions and vice versa, it is possible to find high electromagnetic radiation without significant acoustic activity. As far as we know, there are currently no models that explain these discrepancies in a simple way. In this work we propose a minimal model that is able to generate the frequently observed discrepancies between acoustic and electromagnetic emissions during fracture processes of brittle materials. The model is an electrical version of the fiber bundle model where the fibers are replaced by fuses in a resistor. The resistors are placed on a Wheatstone bridge subjected to a gradually increasing voltage. A capacitor is added to generate charge and discharge processes that will generate the electromagnetic emissions, while the breaking of the fuses will generate the acoustic emissions. The model allows to follow the evolution of acoustic and electromagnetic activities and shows that, despite their common origin, the two phenomena evolve differently.
dc.description.abstractA pesar de su origen común, los experimentos demuestran que las emisiones acústicas y electromagnéticas evolucionan de forma diferente durante los procesos de fractura de materiales frágiles. Es frecuente encontrar picos de actividad acústica sin presencia de emisiones electromagnéticas y viceversa, es posible encontrar una elevada radiación electromagnética sin actividad acústica significativa. Hasta donde sabemos, actualmente no existen modelos que expliquen estas discrepancias de forma sencilla. En este trabajo proponemos un modelo mínimo que es capaz de generar las discrepancias frecuentemente observadas entre las emisiones acústicas y electromagnéticas durante los procesos de fractura de materiales frágiles. El modelo es una versión eléctrica del modelo de haces de fibras en el que las fibras se sustituyen por fusibles en una resistencia. Las resistencias se colocan en un puente de Wheatstone sometido a una tensión que aumenta gradualmente. Se añade un condensador para generar procesos de carga y descarga que generarán las emisiones electromagnéticas, mientras que la rotura de los fusibles generará las emisiones acústicas. El modelo permite seguir la evolución de las actividades acústica y electromagnética y muestra que, a pesar de su origen común, los dos fenómenos evolucionan de forma diferente.
dc.languageeng
dc.publisherIOP Publishing Ltd
dc.relation2046
dc.relationN/A
dc.relationJournal of Physics: Conference Series
dc.relationGrosse C U and Ohtsu M 2008 Acoustic Emission Testing (Berlin: Springer-Verlag) 11-18
dc.relationFrid V and Vozoff K 2005 Electromagnetic radiation induced by mining rock failure Int. J. Coal. Geol. 64 57-65
dc.relationContoyiannis Y, Potirakis S M, Eftaxias K and Contoyianni L 2015 Tricritical crossover in earthquake preparation by analyzing preseismic electromagnetic emissions J. Geodyn. 84 40-54
dc.relationTzanis A and Vallianatos F 2002 Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling ed M Hayakawa and O A Molchanov (Tokyo: Terrapub) A physical model of electrical earthquake precursors due to crack propagation and the motion of charged edge dislocations 117-130
dc.relationGernets A A, Makarets M V, Koshevaya S V, Grimalsky V V, Romero D J and Kotsarenko A N 2004 Electromagnetic emission caused by the fracturing of piezoelectric crystals with an arbitrarily oriented moving crack Physics and Chemistry of the Earth 29 463-472
dc.relationGershenzon N, Zilpimiani D and Maguladze P 1985 Electromagnetic radiation from crack tip during ionic crystals fracture Dokl. Akad. Nauk SSSR 248 1077-1081
dc.relationRabinovitch A, Frid V and Bahat D 2007 Surface oscillations: a possible source of fracture induced electromagnetic radiation Tectonophysics 431 15-21
dc.relationClavijo J, Wang H and Sánchez S 2019 Observation of significant differences between electromagnetic and acoustic emissions during fracture processes: a study on rocks under compression loading J. Phys. Conf. Ser. 1386 012107
dc.relationPradhan S, Hansen A and Chakrabarti B K 2010 Failure processes in elastic fiber bundles Rev. Mod. Phys. 82 499
dc.relationHansen A, Hemmer P C and Pradhan S 2015 The Fiber Bundle Model: Modeling Failure in Materials (Weinheim: Wiley-VCH) 1-8
dc.relationde Arcangelis L, Redner S and Herrmann H J 1985 A random fuse model for breaking processes J. physique, Lett. 46 585-590
dc.relationMoretti P, Dietemann B, Esfandiary N and Zaiser M 2018 Avalanche precursors of failure in hierarchical fuse networks Sci. Rep. 8 1-7
dc.relationHayakawa M and Hobara Y 2010 Current status of seismo-electromagnetics for short-term earthquake prediction Geomat. Nat. Hazards Risk 1 115-155
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.sourcehttps://iopscience.iop.org/article/10.1088/1742-6596/2046/1/012027
dc.titleA minimal model to understand the discrepancies between acoustic and electromagnetic emissions in fracturing processes
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución