dc.contributorGrupo de Investigación Ecitrónica
dc.creatorChaparro Preciado, Javier Alberto
dc.creatorGiraldo, Beatriz
dc.date.accessioned2023-05-09T17:32:09Z
dc.date.accessioned2023-09-06T21:15:21Z
dc.date.available2023-05-09T17:32:09Z
dc.date.available2023-09-06T21:15:21Z
dc.date.created2023-05-09T17:32:09Z
dc.date.issued2014
dc.identifier1557-170X
dc.identifierhttps://repositorio.escuelaing.edu.co/handle/001/2308
dc.identifierhttps://doi.org/10.1109/EMBC.2014.6943533
dc.identifierhttps://ieeexplore.ieee.org/document/6943533
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8706964
dc.description.abstractDisconnection from mechanical ventilation, called the weaning process, is an additional difficulty in the management of patients in intensive care units (ICU). Unnecessary delays in the discontinuation process and a weaning trial that is undertaken too early are undesirable. In this study, we propose an extubation index based on the power of the respiratory flow signal (Pi). A total of 132 patients on weaning trials were studied: 94 patients with successful trials (group S) and 38 patients who failed to maintain spontaneous breathing and were reconnected (group F). The respiratory flow signals were processed considering the following three stages: a) zero crossing detection of the inspiratory phase, b) inflection point detection of the flow curve during the inspiratory phase, and c) calculation of the signal power on the time instant indicated by the inflection point. The zero crossing detection was performed using an algorithm based on thresholds. The inflection points were marked considering the zero crossing of the second derivative. Finally, the inspiratory power was calculated from the energy contained over the finite time interval (between the instant of zero crossing and the inflection point). The performance of this parameter was evaluated using the following classifiers: logistic regression, linear discriminant analysis, the classification and regression tree, Naive Bayes, and the support vector machine. The best results were obtained using the Bayesian classifier, which had an accuracy, sensitivity and specificity of 87%, 90% and 81% respectively.
dc.description.abstractLa desconexión de la ventilación mecánica, denominada proceso de destete, es una dificultad añadida en el manejo de los pacientes en las unidades de cuidados intensivos (UCI). Los retrasos innecesarios en el proceso de desconexión y un ensayo de destete demasiado precoz son indeseables. En este estudio, proponemos un índice de extubación basado en la potencia de la señal de flujo respiratorio (Pi). Se estudiaron 132 pacientes en ensayos de destete: 94 pacientes con ensayos satisfactorios (grupo S) y 38 pacientes que no consiguieron mantener la respiración espontánea y fueron reconectados (grupo F). Las señales de flujo respiratorio se procesaron considerando las tres etapas siguientes: a) detección del cruce por cero de la fase inspiratoria, b) detección del punto de inflexión de la curva de flujo durante la fase inspiratoria, y c) cálculo de la potencia de la señal en el instante de tiempo indicado por el punto de inflexión. La detección del paso por cero se realizó mediante un algoritmo basado en umbrales. Los puntos de inflexión se marcaron considerando el cruce por cero de la segunda derivada. Por último, la potencia inspiratoria se calculó a partir de la energía contenida en el intervalo de tiempo finito (entre el instante del cruce por cero y el punto de inflexión). El rendimiento de este parámetro se evaluó utilizando los siguientes clasificadores: regresión logística, análisis discriminante lineal, el árbol de clasificación y regresión, Naive Bayes y la máquina de vectores de apoyo. Los mejores resultados se obtuvieron utilizando el clasificador bayesiano, que tuvo una precisión, sensibilidad y especificidad del 87%, 90% y 81% respectivamente.
dc.languageeng
dc.publisherChicago
dc.relation81
dc.relation78
dc.relation1
dc.relationN/A
dc.relation36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
dc.relationM. J.F. and J. Kress, “Weaning patients from the ventilator,” The new England Journal of Medicine, vol. 367, pp. 2233–9, 2012.
dc.relationJ-M. Boles, J. Bion, A. Connors , M. Herridge, B. Marsh, C. Melot, R. Pearl, H. Silverman, M. Stanchina, A. Vieillard-Baron, T. Welte 11. “Weaning from mechanical ventilation”. European Respiratory Journal. No. 29: 1033–1056. 2007.
dc.relationTobin, M.J., M.J. Mador, S.M. Guenter, R.F. Lodato, M.A. Sackner, “Variability of resting respiratory center drive and timing in healthy subjects”. J. Appl. Physiol., No. 65, pp. 309-317. 1998.
dc.relationBlackwood, B., Alderdice, F., Burns, K., Cardwell, C., Lavery, G., and O’Halloran, P. (2011). Use of weaning protocols for reducing duration of mechanical ventilation in critically ill adult patients: Cochrane systematic review and meta-analysis. BMJ, 342 (Jan13 2):c7237–c7237.
dc.relationBurns, K., Meade, M., Lessard, MR Hand, L., Zhou, Q., Keenan, S., and Lellouche, F. (2013). Wean earlier and automatically with new technology (the wean study). a multicenter, pilot randomized controlled trial. Am J Respir Crit Care Med, 187(11):12031211.
dc.relationH.R. Hemant, J. Chacko, M.K. Singh, “Weaning from mechanical ventilation- current evidence”. Indian Journal of Anaesth; No. 50(6), pp 435-438. 2006.
dc.relationCasaseca de la Higuera, P., Martín Fernandez, M., & Arbeloa López, C. Weaning from mechanical ventilation: a retrospective analysis leading to a multimodal perspective. IEEE Transaction on biomedical engineering, No. 57(7), pp 1330-1345. 2006.
dc.relationM.J. Tobin, “Advances in mechanical ventilation”, N. Engl. J. Med.,Vol. 344, N. 26, pp. 1986-1996, 2001.
dc.relationSantos Lima, E. J. (2013). Respiratory Rate as a Predictor of Weaning Failure from Mechanical Ventilation. Brazilian Journal of Anesthesiology (English Edition), 63(1):1–6.
dc.relationStawicki, S. P. (2007). Mechanical ventilation: Weaning and extubation. OPUS 12 Scientist, 1(2):13–16.
dc.relationJ. Chaparro, B. Giraldo, P. Caminal, S. Benito. “Performance of Respiratory Pattern Parameters in Classifiers for Predict Weaning Process”. Engineering in Medicine and Biology Society, IEMBS ’12. 34th Annual International Conference of the IEEE. 2012.
dc.relationMcConville, J. F. and Kress, J. P. (2012). Weaning Patients from the Ventilator. New England Journal of Medicine, 367(23):2233–2239.
dc.relationEsteban, A., Frutos-Vivar, F., Muriel, A., Ferguson, N. D., Penuelas, O., et al. (2013). Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med, 188(2): 220230.
dc.relationJiin-Chyr Hsu, Yung-Fu Chen, Hsuan-Hung Lin, Chi-Hsiang Li and Xiaoyi Jiang, “Construction of Prediction Module for Successful Ventilator Weaning”, New Trends in Applied Artificial Intelligence, pp. 766-775, 2007.
dc.relationChao DC and Scheinhorn DJ, “Determining the Best Threshold of Rapid Shallow Breathing Index in a Therapist-Implemented PatientSpecific Weaning Protocol”, Respir Care 2007; 52(2):159 –165.
dc.relationH.Tinsley and S. Brown, “Handbook of applied multivariate statistics and mathematical modeling,” Academic Press, 2000.
dc.relationHuberty C., “Applied Discriminant Analysis, Whiley Series in Probability and Mathematical Statistics”, Editorial Jhon Wiley & Sons Inc., 1994.
dc.relationC. Kingsford and S.L Salzberg, “What are decision trees?”.Nat Biotechnol, Vol. 26, No. 9, pp. 1011–1013, 2008.
dc.relationU. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From Data Mining to Knowledge Discovery in Databases”. American Association for Artificial Intelligence, pp. 0738-4602, 1996.
dc.relationSteinwart I., Chrismann A., “Super Vector Machine, Information Science and Statistics”, Editorial Springer. 2008.
dc.relationA. Garde, R. Schroeder, A. Voss, P. Caminal, S. Benito and B.F. Giraldo, “Patients on weaning trials classified with support vector machines”, Physiol. Meas. 31, pp. 979–993, 2010.
dc.relationM. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond Accuracy,F-Score and ROC: A Family of Discriminant Measures forPerformance Evaluation,” Advances in Artificial Intelligence pp.1015–1021, 2006.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.sourcehttps://ieeexplore.ieee.org/document/6943533
dc.titlePower index of the inspiratory flow signal as a predictor of weaning in intensive care units
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución