dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorde Oliveira, Juliano A.
dc.creatorBizao, R. A.
dc.creatorLeonel, Edson Denis
dc.date2013-09-30T18:50:36Z
dc.date2014-05-20T14:16:25Z
dc.date2016-10-25T17:39:30Z
dc.date2013-09-30T18:50:36Z
dc.date2014-05-20T14:16:25Z
dc.date2016-10-25T17:39:30Z
dc.date2010-04-01
dc.date.accessioned2017-04-05T22:21:50Z
dc.date.available2017-04-05T22:21:50Z
dc.identifierPhysical Review E. College Pk: Amer Physical Soc, v. 81, n. 4, p. 6, 2010.
dc.identifier1539-3755
dc.identifierhttp://hdl.handle.net/11449/24946
dc.identifierhttp://acervodigital.unesp.br/handle/11449/24946
dc.identifier10.1103/PhysRevE.81.046212
dc.identifierWOS:000277265900036
dc.identifierWOS000277265900036.pdf
dc.identifierhttp://dx.doi.org/10.1103/PhysRevE.81.046212
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/869900
dc.descriptionThe transition from integrability to nonintegrability for a set of two-dimensional Hamiltonian mappings exhibiting mixed phase space is considered. The phase space of such mappings show a large chaotic sea surrounding Kolmogorov-Arnold-Moser islands and limited by a set of invariant tori. The description of the phase transition is made by the use of scaling functions for average quantities of the mapping averaged along the chaotic sea. The critical exponents are obtained via extensive numerical simulations. Given the mappings considered are parametrized by an exponent gamma in one of the dynamical variables, the critical exponents that characterize the scaling functions are obtained for many different values of gamma. Therefore classes of universality are defined.
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageeng
dc.publisherAmer Physical Soc
dc.relationPhysical Review E
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.titleFinding critical exponents for two-dimensional Hamiltonian maps
dc.typeOtro


Este ítem pertenece a la siguiente institución