Enfoque de agrupamiento para generar grupos de patrones de tráfico peatonal: un análisis exploratorio

dc.creatorHernández-Vega, Henry
dc.creatorMatamoros-Jiménez, Carolina
dc.date2021-12-31
dc.date2023-03-22T18:49:08Z
dc.date2023-03-22T18:49:08Z
dc.date.accessioned2023-09-06T17:54:03Z
dc.date.available2023-09-06T17:54:03Z
dc.identifierhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/4403
dc.identifier10.18359/rcin.4403
dc.identifierhttp://hdl.handle.net/10654/42590
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8693363
dc.descriptionThis study shows the development of patterns of temporal hourly volume distributions in an urban area in Costa Rica, based on a cluster analysis of pedestrian data. This study aims to establish specific pattern groups for the temporal variation of weekday pedestrian volumes applying cluster analysis in the central business district of Guadalupe in San José. For 46 counting sites, vectors with the weekday hourly factors, the proportion of the daily pedestrian traffic, were estimated. A hierarchical cluster method was implemented to group the vectors of hourly factors from the different counting sites. This method groups elements by minimizing the Euclidean distance between elements of the same group and, at the same time, maximizing the distances from elements of other groups. In addition, the groups found through this analysis are related to land use through buffers of different radios. Eight temporal pattern groups were obtained through cluster analysis. Two pattern groups account for more than two-thirds of the sites included in the study. Fisher’s exact independence test shows that banks and public services could explain some of the patterns observed. The classification of 46 counting sites based on temporal distribution patterns, and the relation with the establishments in the area, allows a simplification of the information and facilitates an understanding of the pedestrian mobility in the area. Further research is required that leads towards geographical elements that could explain the differences in temporal and mobility patterns.
dc.descriptionEl presente estudio muestra el desarrollo de patrones de distribuciones temporales de volumen por hora en un área urbana de Costa Rica con base en un análisis de grupos de datos de peatones. Este estudio tiene como objetivo establecer grupos de patrones específicos para la variación temporal de los volúmenes de peatones entre semana mediante la aplicación del análisis de grupos en el distrito comercial central de Guadalupe en San José. Para 46 sitios de conteo, se estimaron los vectores con los factores horarios del día de la semana y la proporción del tráfico peatonal diario. Se implementó un método de agrupamiento jerárquico para los vectores de factores horarios de los sitios de conteo; este método agrupa elementos minimizando la distancia euclidiana entre elementos del mismo grupo mientras maximiza las distancias con elementos de otros grupos. Los grupos encontrados a través de este análisis están relacionados con el uso del suelo a través de búferes de diferentes radios. Se obtuvieron ocho grupos de patrones temporales mediante análisis de grupos; dos de estos representan más de dos tercios de los sitios incluidos en el estudio. La prueba de independencia exacta de Fisher muestra que los bancos y los servicios públicos podrían dar cuenta de algunos de los patrones observados. Esta clasificación permite una simplificación de la información y facilita la comprensión de la movilidad peatonal en la zona. En este sentido, se requieren más investigaciones que conduzcan a elementos geográficos que podrían explicar diferencias en los patrones temporales y de movilidad.
dc.formatapplication/pdf
dc.formattext/xml
dc.languageeng
dc.publisherUniversidad Militar Nueva Granada
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/4403/4984
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/4403/5056
dc.relation/*ref*/C. Bongiorno, D. Santucci, F. Kon, P. Santi, and C. Ratti. "Comparing bicycling and pedestrian mobility: Patterns of non-motorized human mobility in Greater Boston," J. Transp. Geogr., vol. 80, p. 102501, 2019, doi: https://doi.org/10.1016/j.jtrangeo.2019.102501
dc.relation/*ref*/A. G. Fernández-Garza, H. Hernández-Vega. "Estudio peatonal en un centro urbano: un caso en Costa Rica," Rev. Geogr. Am. Cent., vol. 1, no. 62, pp. 267-300, 2018, doi: https://doi.org/10.15359/rgac.62-1.10
dc.relation/*ref*/US Department of Transportation. Traffic Monitoring Guide, 2016. Available: https://www.fhwa.dot.gov/policyinformation/tmguide/tmg_fhwa_pl_17_003.pdf
dc.relation/*ref*/C. Milligan, R. Poapst, and J. Montufar. "Performance measures and input uncertainty for pedestrian crossing exposure estimates," Accid. Anal. Prev., vol. 50, pp. 490-498, 2013, doi: https://doi.org/10.1016/j.aap.2012.05.024
dc.relation/*ref*/P. Ryus, E. Ferguson, K. Laustsen, R. Schneider, F. Proulx, T. Hull, et al. Guidebook on Pedestrian and Bicycle Volume Data Collection, 2014, doi: https://doi.org/10.17226/22223
dc.relation/*ref*/P. Rietveld. "Biking and walking: the position of non-motorized transport modes in transport systems," in Handbook of transport systems and traffic control, 2001, pp. 299-319, doi: https://doi.org/10.1108/9781615832460-019
dc.relation/*ref*/D. Johnstone, K. Nordback, and S. Kothuri. "Annual average non-motorized traffic estimates from manual counts: quantifying error," Transp. Res. Rec., vol. 2672, no. 43, pp. 134-144, 2018, doi: https://doi.org/10.1177/0361198118792338
dc.relation/*ref*/M. El Esawey, C. Lim, T. Sayed, and A. I. Mosa. "Development of daily adjustment factors for bicycle traffic," J. Transp. Eng., vol. 139, no. 8, pp. 859-871, 2013, doi: https://doi.org/10.1061/(ASCE)TE.1943-5436.0000565
dc.relation/*ref*/R. Schneider, L. Arnold, and D. Ragland. "Methodology for counting pedestrians at intersections: use of automated counters to extrapolate weekly volumes from short manual counts," Transp. Res. Rec., vol. 2140, no. 1, pp. 1-12, 2009, doi: https://doi.org/10.3141/2140-01
dc.relation/*ref*/T. Papagiannakis, M. Bracher, and N. Jackson. "Utilizing cluster techniques in estimating traffic data input for pavement design," J. Transp. Eng., vol. 132, no. 11, pp. 872-879, 2006, doi: https://doi.org/10.1061/(ASCE)0733-947X(2006)132:11(872)
dc.relation/*ref*/F. Sayyady, J. Stone, K. Taylor, F. Jadoun, and R. Kim. "Clustering analysis to characterize mechanistic-empirical pavement design guide traffic data in North Carolina," Transp. Res. Rec., vol. 2160, no. 1, pp. 118-127, 2010, doi: https://doi.org/10.3141/2160-13
dc.relation/*ref*/J. Regehr. "Understanding and anticipating truck fleet mix characteristics for mechanical-empirical pavement design," presented at Transportation Research Board 2011 Annu. Meeting. Washington DC: Transportation Research Board, 2011.
dc.relation/*ref*/M. Reimer and J. Regehr. "A hybrid approach for clustering vehicle classification data to support regional implementation of the mechanistic-empirical pavement design guide," Transp. Res. Rec, vol. 2339, no. 1, pp. 112-119, 2012, doi: https://doi.org/10.3141/2339-13
dc.relation/*ref*/E. van Berkum and W. Weijermars. "Analyzing highway flow patterns using cluster analysis," presented at 8th Int. IEEE Conf. Intelligent Transportation Systems, Vienna, Austria, 2005.
dc.relation/*ref*/J. Wyatt and S. Sharma. "Classification of Saskatchewan highways according to type of road use," Can. J. Civ. Eng., vol. 13, no. 1, pp. 53-58, 1986, doi: https://doi.org/10.1139/l86-008
dc.relation/*ref*/F. Soriguera and D. Rosas. "Deriving Traffic Demand Patterns from Historical Data" presented at Transportation Research Board 2012 Annu. Meeting, Washington DC: Transportation Research Board, 2011, doi: https://doi.org/10.1061/(ASCE)TE.1943-5436.0000456
dc.relation/*ref*/W. Weijermars. "Analysis of urban traffic patterns using clustering," Ph.D. dissertation. Dept. Civ. Eng., Fac. Eng. Technol., Univ. Twente, 2007.
dc.relation/*ref*/P. Vogel, T. Greiser, and D. C. Mattfeld. "Understanding bike-sharing systems using data mining: Exploring activity patterns," Procedia Soc. Behav. Sci., vol. 20, pp. 514-523, 2011, doi: https://doi.org/10.1016/j.sbspro.2011.08.058
dc.relation/*ref*/M. G. Mohamed, N. Saunier, L. F. Miranda-Moreno, and S. V. Ukkusuri. "A clustering regression approach: A comprehensive injury severity analysis of pedestrian-vehicle crashes in New York, US and Montreal, Canada," Saf. Sci., vol. 54, pp. 27-37, 2013, doi: https://doi.org/10.1016/j.ssci.2012.11.001
dc.relation/*ref*/J. Magaña-Cubillo, H. Hernández-Vega, and D. Jiménez-Romero. "Aplicación de análisis de conglomerados a para la caracterización de factores temporales de tránsito para Costa Rica" presented at Congr. Ingeniería Civil, Reto del desarrollo de infraestructura y servicios, San José, Costa Rica, 2014.
dc.relation/*ref*/B. Pushkarev and J. M. Zupan. Pedestrian travel demand, 1971. Available: https://onlinepubs.trb.org/Onlinepubs/hrr/1971/355/355-004.pdf
dc.relation/*ref*/Instituto Tecnológico de Costa Rica. Atlas de Costa Rica 2014, Cartago, Costa Rica, 2016.
dc.relation/*ref*/Instituto Nacional de Estadísticas y Censos. Estadísticas vitales 2018: población, nacimientos, defunciones, matrimonios. Dirección General de Estadística y Censos, 2019. Available: https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/repoblacev2018_0.pdf
dc.relation/*ref*/Programa Estado de la Nación en Desarrollo Humano Sostenible. Indicadores Cantonales, 2013. Available: https://www.inec.cr/sites/default/files/documentos/poblacion/estadisticas/resultados/repoblaccenso2011-01.pdf.pdf
dc.relation/*ref*/Ministerio de Justicia. Anexo estadístico. Atlas de ocurrencia de delitos 2019, 2020. Available: http://observatorio.mj.go.cr/recurso/anexo-estadistico-atlas-de-ocurrencia-de-delitos-2019
dc.relation/*ref*/Cosevi. Anuario Estadístico de accidentes de tránsito con víctimas en Costa Rica, 2019. Available: https://www.csv.go.cr/documents/20126/50694/Anuario+estad%C3%ADstico+de+accidentes+de+tr%C3%A1nsito+con+v%C3%ADctimas+Costa+Rica+2017.pdf/dcf2e128-2660-517b-c360-7cc5cfa5cd2a?t=1574094470460
dc.relation/*ref*/Mopt. Anuario Información del tráfico 2018, 2018. Available: https://www.mopt.go.cr/wps/wcm/connect/f9d4084d-6330-4c21-b947-61dabc81cdfd/AnuarioTransito2018.pdf?MOD=AJPERES
dc.relation/*ref*/Epypsa - Siguma GP. Apoyo al modelo general de sectorización de transporte público San Jose, Costa Rica, 2014.
dc.relation/*ref*/J. H. Ward. "Hierarchical Grouping to Optimize an Objective Function," J. Am. Stat. Assoc., vol. 58, no. 301, pp. 236-244, 1963, doi: https://doi.org/10.1080/01621459.1963.10500845
dc.relation/*ref*/O. Hernández-Rodríguez. Temas de análisis estadístico multivariante, San José: Universidad de Costa Rica, 2013.
dc.relation/*ref*/J. Trejos-Zelaya, W. Castillo-Elizondo, and J. González-Varela. Análisis Multivariado de Datos Métodos y Aplicaciones, San José: Universidad de Costa Rica, 2014.
dc.relation/*ref*/A. G. Fernández-Garza. "Análisis de la movilidad peatonal y caracterización de peatones en el centro de Guadalupe como caso de estudio y aplicación," B.S. thesis, Fac. Eng., Univ. Costa Rica, 2017.
dc.relation/*ref*/OpenStreetMap contributors. Planet dump [Data file], 2015. Available: https://planet.openstreetmap.org.
dc.relation/*ref*/A. P. Vanky, S. K. Verma, T. K. Courtney, P. Santi, and C. Ratti. "Effect of weather on pedestrian trip count and duration: City-scale evaluations using mobile phone application data," Prev. Med. Rep., vol. 8, pp. 30-37, 2017, doi: https://doi.org/10.1016/j.pmedr.2017.07.002
dc.relation/*ref*/A. Forsyth, J. M. Oakes, B. Lee, and K. H. Schmitz. "The built environment, walking, and physical activity: Is the environment more important to some people than others?" Transp. Res. Part D: Transp. Environ., vol. 14, no. 1, pp. 42-49, 2009, doi: https://doi.org/10.1016/j.trd.2008.10.003
dc.rightsDerechos de autor 2022 Ciencia e Ingeniería Neogranadina
dc.sourceCiencia e Ingenieria Neogranadina; Vol. 31 No. 2 (2021); 41-60
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 31 Núm. 2 (2021); 41-60
dc.sourceCiencia e Ingeniería Neogranadina; v. 31 n. 2 (2021); 41-60
dc.source1909-7735
dc.source0124-8170
dc.subjectPedestrian
dc.subjecttemporal pattern
dc.subjectcluster analysis
dc.subjectmobility
dc.subjecturban area
dc.subjectpeatón
dc.subjectpatrón temporal
dc.subjectanálisis de grupos
dc.subjectmovilidad
dc.subjectárea urbana
dc.titleClustering Approach to Generate Pedestrian Traffic Pattern Groups: An Exploratory Analysis
dc.titleEnfoque de agrupamiento para generar grupos de patrones de tráfico peatonal: un análisis exploratorio
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución