Determinación de presiones críticas de la ventana de lodo, aplicando modelos analíticos y caracterizaciones geomecánicas

dc.creatorMuñoz Quijano, Ingrid Natalia
dc.creatorPerdomo Lozada, Carlos Andrés
dc.date2021-07-23
dc.date2023-03-22T18:49:10Z
dc.date2023-03-22T18:49:10Z
dc.date.accessioned2023-09-06T17:52:37Z
dc.date.available2023-09-06T17:52:37Z
dc.identifierhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/4732
dc.identifier10.18359/rcin.4732
dc.identifierhttp://hdl.handle.net/10654/42599
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8693248
dc.descriptionIn Colombia, sedimentary basins are structurally complex and have a high tectonism, meaning that drilling operations in hydrocarbon deposits are also complex and, consequently, causing time and money losses to the hydrocarbons industry. Applying areas of knowledge such as geomechanics is a viable solution to the challenge of stabilizing wells. This study proposes algorithms to evaluate pre-existing models, with new models describing the concentration of the stresses around the well and the failure criterion, establishing the failure relationship between rock resistance and the stresses it concentrates. This allows to describe the stress state of the well wall by combining tension and compressional failure criteria to obtain critical fracture and collapse pressures, respectively. Along with pore pressure, those pressures are the components of the mud window, with which the well stability can be improved, from the weight of the mud and the direction of the well. It was found that, in tension models, with respect to tension critical pressure, the regions are found for Azwell between 150-330° and 180-360° and Incwell between 60° and 90°. Also, that lower overbalanced values agree with the most stable direction, which is found for Incwell at approximately 0-20°, which makes low-slope wells to show more evenly distributed stress, compared to highly diverted wells.
dc.descriptionEn Colombia, las cuencas sedimentarias son estructuralmente complejas y presentan un alto tectonismo, por lo que la tendencia es que las operaciones de perforación en yacimientos de hidrocarburos sean complejas y, en consecuencia, causen pérdidas de tiempo y dinero a la industria de hidrocarburos. La aplicación de áreas del conocimiento como la geomecánica es una solución viable al desafío de estabilizar pozos. Este estudio propone algoritmos para evaluar los modelos preexistentes, con modelos nuevos que describen la concentración de los esfuerzos alrededor del pozo y el criterio de falla, estableciendo la relación de falla entre la resistencia de la roca y los esfuerzos que concentra. Ello permite describir el estado de esfuerzos de la pared del pozo, al combinar los criterios de fallas tensionales y compresionales, para obtener las presiones críticas de fractura y colapso, respectivamente. Junto con la presión de poro, aquellas presiones son los componentes de la ventana de lodo, con la que puede mejorarse la estabilidad del pozo, a partir del peso del lodo y la dirección del pozo. Se encontró que, en modelos tensionales, con respecto a la presión crítica tensional, las regiones se encuentran para Azpozo entre 150-330° y 180-360° e Incpozo entre 60° y 90°; también, que valores menores del overbalanced concuerdan con la dirección más estable, que se encuentra para Incpozo en 0-20°, aproximadamente, lo que hace que los pozos de poca inclinación tengan distribución más uniforme de esfuerzos, en comparación con los pozos altamente desviados.
dc.formatapplication/pdf
dc.formattext/xml
dc.languagespa
dc.publisherUniversidad Militar Nueva Granada
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/4732/4742
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/4732/4804
dc.relation/*ref*/H. Mora-Páez y C. M. Jaramillo, “Aproximación a la construcción de cartografía social a través de la geomática”, Ventana Informática, vol. 11, pp. 129-146, 2018.
dc.relation/*ref*/O. Heidbach et al., “The World Stress Map Database Release 2016: Crustal Stress Pattern Across Scales”, Tectonophysics, vol. 744, pp. 484-498, 2018. Doi: https://doi.org/10.1016/j.tecto.2018.07.007
dc.relation/*ref*/H, Soroush, “Discover a Career in Geomechanics." The Way Ahead, vol. 9, n.° 3, pp. 15, 2013. Doi: https://doi.org/10.2118/0313-015-TWA
dc.relation/*ref*/M. A. Addis, “The Geology of Geomechanics: Petroleum Geomechanical Engineering in Field Development Planning”, Geological Society, London, Special Publications, vol. 458, n.° 1, pp. 7-29, 2017. Doi: https://doi.org/10.1144/SP458.7
dc.relation/*ref*/G. Osorio y C. F. Lopez, “Geomechanical Factors Affecting the Hydraulic Fracturing Performance in a Geomechanically Complex, Tectonically Active Area in Colombia”, en Latin American and Caribbean Petroleum Engineering Conference, Cartagena de Indias, Colombia, 2009. Doi: https://doi.org/10.2118/122315-MS
dc.relation/*ref*/F. Fernández-Ibáñez et al., “3D Geomechanical Modeling for the Apiay and Suria Oil Fields (Llanos Orientales Basin, Colombia): Insights on the Stability of Reservoir-Bounding Faults”, en SPE Latin American and Caribbean Petroleum Engineering Conference, Lima, Perú, 2010. Doi: https://doi.org/10.2118/138869-MS
dc.relation/*ref*/C. Guerra, K. Fischer y A. Henk, “Stress Prediction Using 1D and 3D Geomechanical Models of a Tight Gas Reservoir —A Case Study from the Lower Magdalena Valley Basin, Colombia”, Geomechanics for Energy and the Environment, vol. 19, p. 100113, 2019. https://doi.org/10.1016/j.gete.2019.01.002
dc.relation/*ref*/L. A. Medina y A. N. Tutuncu, “3-D Geomechanical Modeling for Field Development of a Colombian Shale Play,” en Unconventional Resources Technology Conference (urtec) of Society of Exploration Geophysicists, Denver, Colorado, 2019, pp. 3897-3916. Doi: https://doi.org/10.15530/urtec-2019-467
dc.relation/*ref*/O. Carvajal y C. Sierra, “Risk Mitigation in Overpressured Wells Through Geomechanical Approach”, en spe Latin American and Caribbean Petroleum Engineering Conference, Virtual, 2020. Doi: https://doi.org/10.2118/199141-MS
dc.relation/*ref*/Amoco Corporation –Amoco, “Wellbore Stability Drilling Handbook”. ee. uu., Amoco Corporation, 1997.
dc.relation/*ref*/R. F. Mitchell y S. Z. Miska, “Fundamentals of Drilling Engineering”, Houston [tx]: Country of publication: Society of Petroleum Engineers, 2011.
dc.relation/*ref*/X. Chen, C. P. Tan y C. M. Haberfield, “A Comprehensive, Practical Approach for Wellbore Instability Management”, spe Drilling & Completion, vol. 17, n.° 04, pp. 224-236, 2002. Doi: https://doi.org/10.2118/80146-PA
dc.relation/*ref*/S. Li, J. George y C. Purdy, “Pore-pressure and Wellbore-Stability Prediction to Increase Drilling Efficiency”, Journal of Petroleum Technology, vol. 64, n.° 02, pp. 98-101, 2012. Doi: https://doi.org/10.2118/144717-JPT
dc.relation/*ref*/C. Anyanwu et al., “Analysis of Wellbore Stability in Multilateral Well Design and Construction”, en SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 2013. Doi: https://doi.org/10.2118/167546-MS
dc.relation/*ref*/S. Wessling et al., “Automation in Wellbore Stability Workflows”, en spe Intelligent Energy International, Utrecht, The Netherlands, March, 2012. Doi: https://doi.org/10.2118/149766-MS
dc.relation/*ref*/E. G. Kirsch, Die Fundamentalgleichungen der Theorie der Elasticität fester Körper, hergeleitet aus der Betrachtung eines Systems von Punkten, welche durch elatische Streben verbunden sind. Berlin, Heidelberg: Elsevier, 1868.
dc.relation/*ref*/B. Aadnoy et al., “Advanced Drilling and Well Technology”, Houston [tx]: Society of Petroleum Engineers, 2009, pp. 301-440.
dc.relation/*ref*/M. D. Zoback, “Reservoir geomechanics”, Cambridge [uk]: Cambridge University Press, 2010.
dc.relation/*ref*/R. Rahimi y N. Runar, “What Difference Does Selection of Failure Criteria Make in Wellbore Stability Analysis?”; en 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, Minnesota, 2014.
dc.relation/*ref*/R. F. Mitchell, K. Ravi y Pgs. H, “Volume II-Drilling Engineering”, Richardson [tx]: Society of Petroleum Engineers, 2006.
dc.rightsDerechos de autor 2021 Ciencia e Ingeniería Neogranadina
dc.sourceCiencia e Ingenieria Neogranadina; Vol. 31 No. 1 (2021); 25-36
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 31 Núm. 1 (2021); 25-36
dc.sourceCiencia e Ingeniería Neogranadina; v. 31 n. 1 (2021); 25-36
dc.source1909-7735
dc.source0124-8170
dc.subjectFailure criterion
dc.subjectwell stability
dc.subjectgeomechanics
dc.subjectcritical collapse pressure
dc.subjectcritical fracture pressure
dc.subjectmud window
dc.subjectcriterio de falla
dc.subjectestabilidad de pozos
dc.subjectgeomecánica
dc.subjectpresión crítica de colapso
dc.subjectpresión crítica de fractura
dc.subjectventana de lodo
dc.titleDetermination of Critical Mud Window Pressures by Applying Analytical Models and Geo-Mechanical Characterization
dc.titleDeterminación de presiones críticas de la ventana de lodo, aplicando modelos analíticos y caracterizaciones geomecánicas
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución