New type I ancient compact solutions of the Yamabe flow
Mathematical Research Letters
dc.creator | Daskalopoulos, Panagiota | |
dc.creator | Del Pino-Manresa, Manuel Adrián | |
dc.creator | King, John | |
dc.creator | Sesum, Natasa | |
dc.date | 2021-08-23T22:54:07Z | |
dc.date | 2022-07-05T15:01:50Z | |
dc.date | 2021-08-23T22:54:07Z | |
dc.date | 2022-07-05T15:01:50Z | |
dc.date | 2017 | |
dc.date.accessioned | 2023-08-23T00:20:25Z | |
dc.date.available | 2023-08-23T00:20:25Z | |
dc.identifier | 1150066 | |
dc.identifier | 1150066 | |
dc.identifier | https://hdl.handle.net/10533/251316 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8354753 | |
dc.description | We construct new ancient compact solutions to the Yamabe flow. Our solutions are rotationally symmetric and converge, as t -> -infinity, to two self-similar complete non-compact solutions to the Yamabe flow moving in opposite directions. They are type I ancient solutions. Keywords KeyWords Plus:CONVERGENCE | |
dc.description | CLASSIFICATION | |
dc.description | CURVATURE | |
dc.description | SOLITONS | |
dc.description | EQUATION | |
dc.description | Regular 2015 | |
dc.description | FONDECYT | |
dc.description | FONDECYT | |
dc.language | eng | |
dc.relation | handle/10533/111557 | |
dc.relation | handle/10533/111541 | |
dc.relation | handle/10533/108045 | |
dc.relation | https://arxiv.org/pdf/1601.05349.pdf | |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Chile | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.rights | info:eu-repo/semantics/article | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | New type I ancient compact solutions of the Yamabe flow | |
dc.title | Mathematical Research Letters | |
dc.type | Articulo | |
dc.type | info:eu-repo/semantics/publishedVersion |