Advances in Differential Equations

dc.creatorManásevich, R,
dc.creatorMawhin, J.
dc.date2020-08-14T20:43:05Z
dc.date2022-07-08T20:16:24Z
dc.date2020-08-14T20:43:05Z
dc.date2022-07-08T20:16:24Z
dc.date2000
dc.date.accessioned2023-08-23T00:19:17Z
dc.date.available2023-08-23T00:19:17Z
dc.identifier15000001
dc.identifier15000001
dc.identifierhttps://hdl.handle.net/10533/245940
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8354677
dc.descriptionLet p>1, and ψp:RN→R,v↦|v|p−2v, with |v| the Euclidian norm of v. This paper is devoted to the study of the corresponding eigenvalue problem (ψp(u′))′+λψp(u)=0, under the Dirichlet, Neumann and periodic boundary conditions. The eigenvalues in the Dirichlet and Neumann cases are the same when N=1 and N≥2, but not in the periodic case, where the exact nature of the set of eigenvalues is still open. We provide some information about this set. Variational characterizations of the first positive eigenvalue are obtained in the case of all three boundary conditions, as well as the corresponding generalized Poincaré's or Wirtinger's inequalities. Applications are given to forced Liénard-type systems and to systems with growth of order p−1.
dc.descriptionCMM
dc.descriptionFONDAP
dc.descriptionFONDAP
dc.languageeng
dc.relationinstname: ANID
dc.relationreponame: Repositorio Digital RI2.0
dc.relationhttps://projecteuclid.org/euclid.ade/1356651224
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleThe spectrum of p-Laplacian systems with various boundary conditions and applications
dc.titleAdvances in Differential Equations
dc.typeArticulo
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución