dc.creatorLibrado Arturo Sarmiento Reyes
dc.date2012
dc.date.accessioned2023-07-25T16:24:58Z
dc.date.available2023-07-25T16:24:58Z
dc.identifierhttp://inaoe.repositorioinstitucional.mx/jspui/handle/1009/2111
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7807292
dc.descriptionThe homotopy perturbation method (HPM) is employed to obtain an approximate solution for the nonlinear differential equation which describes Troesch’s problem. In contrast to other reported solutions obtained by using variational iteration method, decomposition method approximation, homotopy analysis method, Laplace transform decomposition method, and HPM method, the proposed solution shows the highest degree of accuracy in the results for a remarkable wide range of values of Troesch’s parameter.
dc.formatapplication/pdf
dc.languageeng
dc.publisherMathematical Problems in Engineering
dc.relationcitation:Vazquez-Leal, Hector, et al., (2012), A General Solution for Troesch’s Problem, Mathematical Problems in Engineering, Vol. 2012:1–15
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectinfo:eu-repo/classification/Inspec/Homotopy perturbation method
dc.subjectinfo:eu-repo/classification/Inspec/Nonlinear differential equation
dc.subjectinfo:eu-repo/classification/Inspec/Troesch’s problem
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectinfo:eu-repo/classification/cti/22
dc.subjectinfo:eu-repo/classification/cti/2203
dc.subjectinfo:eu-repo/classification/cti/2203
dc.titleA General Solution for Troesch’s Problem
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.audiencestudents
dc.audienceresearchers
dc.audiencegeneralPublic


Este ítem pertenece a la siguiente institución