Tesis
ANÁLISE DO DESEMPENHO DO MODELO OLAM NA PREVISÃO NUMÉRICA PARA O SUL DO BRASIL
Autor
DAlesio, Hugo Alejandro
Institución
Resumen
TCC(graduação) - Universidade Federal de Santa Catarina. Centro de Ciências Físicas e Matemáticas. Meteorologia. A região sul do Brasil tem tido uma grande frequência de eventos meteorológicos extremos. Melhorar a previsão destes eventos é de grande importância para a sociedade. Este trabalho tem como objetivo avaliar o desempenho de um modelo de previsão numérica de tempo para a região da América do Sul, em especial a Região Sul do Brasil. Para alcançar este objetivo utilizamos o modelo atmosférico Ocean Land Atmosphere Model (OLAM) o qual é considerado atualmente como o novo estado-da-arte em modelagem numérica devido a sua capacidade de representar fenômenos de escala global e regional simultaneamente. Este modelo utiliza uma grade não estruturada que se distribui sobre a esfera do globo terrestre e possibilita um aumento da resolução espacial através do refinamento de grade. Neste estudo configuramos o modelo com uma grade global com espaçamento de grade da ordem de 240 km e da ordem de 15 km para a região de maior resolução espacial que foi centrada no estado de Santa Catarina. Para poder avaliar a maioria dos eventos meteorológicos que ocorrem no sul do Brasil foram realizadas 12 simulações de 72 horas para o inicio de cada mês do ano de 2014. Como condição atmosférica inicial de temperatura do ar, componentes de vento, umidade relativa do ar, pressão atmosférica e altura geopotencial foram obtidas de dados do projeto de reanálise do National Center for Environmental Prediction (NCEP). Como o modelo é global, não houve necessidade de nudging lateral a partir de dados de outros modelos de baixa resolução. Dados da Temperatura da Superfície do Mar (TSM) obtidos da National Oceanic and Atmospheric Administration (NOAA) foram usados como condição de superfície para os oceanos. Os resultados do modelo foram comparados com dados de precipitação obtidos a partir de: observações do satélite TRMM, dados do Global Precipitation Climatology Project (GPCP), dados dos satélites Terra e Aqua e dados das estações meteorológicas do INMET. Os resultados mostraram que o modelo consegue prever a ocorrência ou não de precipitação dos principais eventos observados através dos mapas de precipitação e das imagens de satélite.
Para a precipitação acumulada em 72 horas as previsões apresentam boa distribuição espacial se comparadas com mapas de observação. As analises estatísticas da previsão da temperatura de superfície mostram resultados satisfatórios principalmente para as localidades continentais (Indaial, Lages) em contraste com temperaturas mais baixas para localidades costeiras (Florianópolis). Em geral as previsões são melhores para as primeiras 48 horas com diminuição da previsibilidade a partir do terceiro dia. Os meses mais frios apresentam melhores correlações, indicando que eventos de maior escala são melhor representados do que eventos convectivos de mesoescala que geralmente ocorrem nos meses mais quentes. The Southern Region of Brazil has had a high frequency of extreme meteorological events. Improving these events forecast is very important for society. This work aims to evaluate the performance of a numerical weather prediction model for the South American region, especially for the southern Brazil. To accomplish this, we used the Ocean Land-Atmosphere Model (OLAM), that is considered a state-of-the-art numerical modeling due to its ability to represent phenomena of global and regional scale simultaneously. This model uses an unstructured grid that is deployed over the globe and enables a local resolution improvement using a grid refinement. In this study we set the model with a global grid with about 240 km of grid spacing and about 15 km for the region of higher resolution over the center of Santa Catarina state. To evaluate the model a total of 12 simulations of 72 hours was executed starting on the first day of each month for the year 2014. The initial atmospheric condition of air temperature, winds, relative humidity, atmospheric pressure and geopotential height was obtained from the National Center for Environmental Prediction (NCEP). Since the model is global, nudging from coarse global models was not necessary. Sea surface temperature (SST) was obtained from National Oceanic and Atmospheric Administration (NOAA) as an ocean surface boundary condition. The model results were compared with rainfall data obtained from: TRMM satellite estimates, the Global Precipitation Data Climatology Project (GPCP), Terra and Aqua satellite data and data from weather INMET stations. The results showed that the model can predict the occurrence or not of rainfall of the main events observed through the precipitation maps and satellite images. For the accumulated rainfall in 72 hours forecasts show good spatial distribution compared with observation maps. Analyses surface temperature forecast statistics show satisfactory results especially for continental locations (Indaial, Lages) in contrast to lower temperatures to coastal locations (Florianópolis). Overall forecasts are better for the first 48 hours with decreased predictability from the third day. The coldest months show better correlations, indicating that larger scale events are better represented than mesoscale convective events that usually occur in the warmer months.