dc.contributorElsevier
dc.creatorStefan C. Mancas
dc.creatorRosu Barbus, Haret-Codratian
dc.date2018-03-21T23:42:40Z
dc.date2018-03-21T23:42:40Z
dc.date2014
dc.date.accessioned2023-07-17T22:05:03Z
dc.date.available2023-07-17T22:05:03Z
dc.identifierStefan C. Mancas, Haret C. Rosu, Ermakov-Lewis invariants and Reid systems, Physics Letters A, Volume 378, Issue 30, 2014, Pages 2113-2117, ISSN 0375-9601, http://dx.doi.org/10.1016/j.physleta.2014.05.008.
dc.identifierhttp://hdl.handle.net/11627/3537
dc.identifierhttps://doi.org/10.1016/j.physleta.2014.05.008
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7544226
dc.description"Reid´s mth-order generalized Ermakov systems of nonlinear coupling constant ? are equivalent to an integrable Emden-Fowler equation. The standard Ermakov-Lewis invariant is discussed from this perspective, and a closed formula for the invariant is obtained for the higher-order Reid systems (m ? 3). We also discuss the parametric solutions of these systems of equations through the integration of the Emden-Fowler equation and present an example of a dynamical system for which the invariant is equivalent to the total energy."
dc.formatapplication/pdf
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso Abierto
dc.subjectErmakov-Lewis invariant
dc.subjectReid system
dc.subjectEmden-Fowler equation
dc.subjectAbel equation
dc.subjectParametric solution
dc.subjectCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.titleErmakov-Lewis invariants and Reid systems
dc.typearticle


Este ítem pertenece a la siguiente institución