dc.creatorCarpintero, Daniel Diego
dc.creatorMuzzio, Juan Carlos
dc.date2020
dc.date2021-09-23T14:13:36Z
dc.date.accessioned2023-07-15T03:15:36Z
dc.date.available2023-07-15T03:15:36Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/125462
dc.identifierissn:0035-8711
dc.identifierissn:1365-2966
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7465033
dc.descriptionWe show that the Lyapunov exponents of a periodic orbit can be easily obtained from the eigenvalues of the monodromy matrix. It turns out that the Lyapunov exponents of simply stable periodic orbits are all zero, simply unstable periodic orbits have only one positive Lyapunov exponent, doubly unstable periodic orbits have two different positive Lyapunov exponents and the two positive Lyapunov exponents of complex unstable periodic orbits are equal. We present a numerical example for periodic orbits in a realistic galactic potential. Moreover, the center manifold theorem allowed us to show that stable, simply unstable and doubly unstable periodic orbits are the mothers of families of, respectively, regular, partially and fully chaotic orbits in their neighbourhood.
dc.descriptionInstituto de Astrofísica de La Plata
dc.formatapplication/pdf
dc.format1608-1612
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsCreative Commons Attribution 4.0 International (CC BY 4.0)
dc.subjectCiencias Astronómicas
dc.subjectAstronomía
dc.subjectchaos
dc.subjectinstabilities
dc.subjectgalaxies: kinematics and dynamics
dc.titleThe Lyapunov exponents and the neighbourhood of periodic orbits
dc.typeArticulo
dc.typePreprint


Este ítem pertenece a la siguiente institución