Articulo
Correlations between mass, stellar kinematics, and gas metallicity in EAGLE galaxies
Registro en:
issn:1745-3925
issn:1745-3933
Autor
Zenocratti, Lucas José
De Rossi, M. E.
Lara-López, Maritza A.
Theuns, Tom
Institución
Resumen
The metallicity of star-forming gas in galaxies from the EAGLE (Evolution and Assembly of GaLaxies and their Environments) simulations increases with stellar mass. Here, we investigate whether the scatter around this relation correlates with morphology and/or stellar kinematics. At redshift z = 0, galaxies with more rotational support have lower metallicities on average when the stellar mass is below M⋆ ≈ 1010 M⊙. This trend inverts at higher values of M⋆, when prolate galaxies show typically lower metallicity. At increasing redshifts, the trend between rotational support and metallicity becomes weaker at low stellar mass but more pronounced at high stellar mass. We argue that the secondary dependence of metallicity on stellar kinematics is another manifestation of the observed anticorrelation between metallicity and star formation rate at a given stellar mass. At low masses, such trends seem to be driven by the different star formation histories of galaxies and stellar feedback. At high masses, feedback from active galactic nuclei and galaxy mergers plays a dominant role. Facultad de Ciencias Astronómicas y Geofísicas
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Galaxy And Mass Assembly (GAMA): the signatures of galaxy interactions as viewed from small-scale galaxy clustering
Gunawardhan, M. L. P.; Norberg, P.; Zehavi, I.; Farrow, D. J.; Loveday, J.; Hopkins, A. M.; Davie, L. J. M.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Holwerda, B. W.; Owers, M. S.; Wrigh, A. H. (2018)Statistical studies of galaxy-galaxy interactions often utilize net change in physical properties of progenitors as a function of the separation between their nuclei to trace both the strength and the observable time-scale ...