dc.creatorAntezana, Jorge Abel
dc.creatorMarzo, Jordi
dc.creatorOlsen, Jan-Fredrik
dc.date2017-04
dc.date2020-08-14T14:20:23Z
dc.date.accessioned2023-07-14T20:37:56Z
dc.date.available2023-07-14T20:37:56Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/102363
dc.identifierhttps://ri.conicet.gov.ar/11336/20214
dc.identifierhttps://academic.oup.com/imrn/article-abstract/2017/8/2284/3060657/Zeros-of-Random-Functions-Generated-with-de
dc.identifierissn:1073-7928
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7439995
dc.descriptionWe study the point process given by the set of real zeros of random series generated with orthonormal bases of reproducing kernels of de Branges spaces. We find an explicit formula for the intensity function in terms of the phase of the Hermite-Biehler function generating the de Branges space. We prove that the intensity of the point process completely characterizes the underlying de Branges space.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format2284-2299
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectGaussian analytic functions
dc.subjectDe Branges spaces
dc.subjectFirst intensity function
dc.subjectKac-rice formula
dc.titleZeros of Random Functions Generated with de Branges Kernels
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución