dc.contributorCholaquidis Alejandro, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.
dc.contributorFraiman Ricardo, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.
dc.contributorGamboa Fabrice, Institut de Mathématiques de Toulouse
dc.contributorMoreno Leonardo, Universidad de la República (Uruguay). FCEA
dc.creatorCholaquidis, Alejandro
dc.creatorFraiman, Ricardo
dc.creatorGamboa, Fabrice
dc.creatorMoreno, Leonardo
dc.date.accessioned2023-06-02T14:31:09Z
dc.date.accessioned2023-07-13T17:40:03Z
dc.date.available2023-06-02T14:31:09Z
dc.date.available2023-07-13T17:40:03Z
dc.date.created2023-06-02T14:31:09Z
dc.date.issued2020
dc.identifierCholaquidis, A, Fraiman, R, Gamboa, F [y otro autor]. "Weighted lens depth: Some applications to supervised classification". [Preprint]. Publicado en: Mathematics (Statistics Theory). [en línea] 2020 arXiv:2011.11140, Nov 2020. 19 h.
dc.identifierhttps://hdl.handle.net/20.500.12008/37377
dc.identifier10.48550/arXiv.2011.11140
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7425915
dc.description.abstractStarting with Tukey’s pioneering work in the 1970’s, the notion of depth in statistics has been widely extended especially in the last decade. These extensions include high dimensional data, functional data, and manifold-valued data. In particular, in the learning paradigm, the depth-depth method has become a useful technique. In this paper we extend the notion of lens depth to the case of data in metric spaces, and prove its main properties, with particular emphasis on the case of Riemannian manifolds, where we extend the concept of lens depth in such a way that it takes into account non-convex structures on the data distribution. Next we illustrate our results with some simulation results and also in some interesting real datasets, including pattern recognition in phylogenetic trees using the depth–depth approach.
dc.languageen
dc.publisherarXiv
dc.relationMathematics (Statistics Theory), arXiv:2011.11140, Nov 2020
dc.rightsLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)
dc.subjectMathematics - Statistics theory
dc.titleWeighted lens depth: Some applications to supervised classification
dc.typeArtículo


Este ítem pertenece a la siguiente institución