dc.contributor | Cholaquidis Alejandro, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática. | |
dc.contributor | Fraiman Ricardo, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática. | |
dc.contributor | Gamboa Fabrice, Institut de Mathématiques de Toulouse | |
dc.contributor | Moreno Leonardo, Universidad de la República (Uruguay). FCEA | |
dc.creator | Cholaquidis, Alejandro | |
dc.creator | Fraiman, Ricardo | |
dc.creator | Gamboa, Fabrice | |
dc.creator | Moreno, Leonardo | |
dc.date.accessioned | 2023-06-02T14:31:09Z | |
dc.date.accessioned | 2023-07-13T17:40:03Z | |
dc.date.available | 2023-06-02T14:31:09Z | |
dc.date.available | 2023-07-13T17:40:03Z | |
dc.date.created | 2023-06-02T14:31:09Z | |
dc.date.issued | 2020 | |
dc.identifier | Cholaquidis, A, Fraiman, R, Gamboa, F [y otro autor]. "Weighted lens depth: Some applications to supervised classification". [Preprint]. Publicado en: Mathematics (Statistics Theory). [en línea] 2020 arXiv:2011.11140, Nov 2020. 19 h. | |
dc.identifier | https://hdl.handle.net/20.500.12008/37377 | |
dc.identifier | 10.48550/arXiv.2011.11140 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/7425915 | |
dc.description.abstract | Starting with Tukey’s pioneering work in the 1970’s, the notion of depth in statistics has been widely extended especially in the last decade. These extensions include high dimensional data, functional data, and manifold-valued data. In particular, in the learning paradigm, the depth-depth method has become a useful technique. In this paper we extend the notion of lens depth to the case of data in metric spaces, and prove its main properties, with particular emphasis on the case of Riemannian manifolds, where we extend the concept of lens depth in such a way that it takes into account non-convex structures on the data distribution. Next we illustrate our results with some simulation results and also in some interesting real datasets, including pattern recognition in phylogenetic trees using the depth–depth approach. | |
dc.language | en | |
dc.publisher | arXiv | |
dc.relation | Mathematics (Statistics Theory), arXiv:2011.11140, Nov 2020 | |
dc.rights | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | |
dc.subject | Mathematics - Statistics theory | |
dc.title | Weighted lens depth: Some applications to supervised classification | |
dc.type | Artículo | |