dc.contributorFrommel Araújo Fabián, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.contributorCapdehourat Germán, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.contributorLarroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creatorFrommel Araújo, Fabián
dc.creatorCapdehourat, Germán
dc.creatorLarroca, Federico
dc.date.accessioned2023-06-01T19:14:51Z
dc.date.accessioned2023-07-13T17:39:41Z
dc.date.available2023-06-01T19:14:51Z
dc.date.available2023-07-13T17:39:41Z
dc.date.created2023-06-01T19:14:51Z
dc.date.issued2023
dc.identifierFrommel Araújo, F., Capdehourat, G. y Larroca, F. Reinforcement learning based coexistence in mixed 802.11ax and legacy WLANs [en línea]. EN: 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, United Kingdom, 26-29 mar 2023, pp. 1-6. DOI: 10.1109/WCNC55385.2023.10119114
dc.identifierhttps://hdl.handle.net/20.500.12008/37364
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7425889
dc.description.abstractThe new 802.11 amendment, 802.11ax, represents a significant shift in the WLAN operation, specially in the MAC layer where the access mechanism is now OFDMA. In particular, the Access Point (AP) is now responsible for scheduling the terminals’ transmissions, which avoids collisions and results in an efficient usage of the spectrum. However, a full transition to this new technology is not foreseeable for several years, and until then mixed scenarios that also include legacy stations will be predominant. In this context, where both the AP and the legacy stations use CSMA/CA to access the channel, a very challenging aspect is the coexistence between both types of stations, where naturally the AP should have priority but legacy stations should not be excluded. In this paper we present a deep reinforcement learning system that adjusts the contention window so as to maximize a certain notion of fairness. Differently to previous proposals, none of which to the best of our knowledge focused on this mixed scenario, the choice of parameters that characterize the environment is informed on existing 802.11 models. This results for instance in a stable choice of the contention window and larger throughputs. Thorough simulations corroborate the performance of the proposed method, which we make available at https://github.com/ffrommel/RLinWiFi.
dc.languageen
dc.rightsLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)
dc.subjectDeep learning
dc.subjectWireless LAN
dc.subjectReinforcement learning
dc.subjectIEEE 802.11ax Standard
dc.subjectThroughput
dc.subjectProposals
dc.subjectCSMA/CA
dc.subjectOFDMA
dc.subjectFairness
dc.subjectDeep reinforcement learning
dc.titleReinforcement learning based coexistence in mixed 802.11ax and legacy WLANs.
dc.typePonencia


Este ítem pertenece a la siguiente institución