dc.contributorCampiotti María Victoria, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.contributorFinozzi Nicolás Eduardo, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.contributorIrazoqui Juan Diego, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.contributorCabrera Varinia, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.contributorUngerfeld Rodolfo, Universidad de la República (Uruguay). Facultad de Veterinaria.
dc.contributorOreggioni Julián, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creatorCampiotti, María Victoria
dc.creatorFinozzi, Nicolás Eduardo
dc.creatorIrazoqui, Juan Diego
dc.creatorCabrera, Varinia
dc.creatorUngerfeld, Rodolfo
dc.creatorOreggioni, Julián
dc.date.accessioned2023-05-29T21:57:03Z
dc.date.accessioned2023-07-13T17:38:38Z
dc.date.available2023-05-29T21:57:03Z
dc.date.available2023-07-13T17:38:38Z
dc.date.created2023-05-29T21:57:03Z
dc.date.issued2023
dc.identifierCampiotti, M., Finozzi, N., Irazoqui, J. y otros. Wearable device to monitor sheep behavior [Preprint]. Publicado en: IEEE Embedded Systems Letters. 2023 vol. 15, no. 2, pp. 89-92. DOI: 10.1109/LES.2022.3190305
dc.identifierhttps://hdl.handle.net/20.500.12008/37309
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/7425813
dc.description.abstractMonitoring sheep activity can be crucial for improving productivity and animal welfare. This work presents the design, manufacture, and test of a collar-type device to monitor sheep behavior. The device consists of an MSP-EXP432P401R microcontroller from Texas Instruments, a Bosch Sensortec´s BMI160 3-axis accelerometer, and a narrowband-IoT BG96 modem from Quectel that includes a global positioning system. The device has two operating modes: 1) validation mode (VM) to test and validate algorithms for characterizing sheep activity and 2) research mode (RM) to support multiday animal experiments to study their behavior. In VM, it sends accelerometer data, the animal?s state (run, walk, stand, or head down), and the location to the Central System every 20 s. VM has an autonomy of 51 h. In RM, the device transmits the animal?s state and the location every 2 or more minutes to extend the autonomy to more than ten days. The microcontroller identifies the sheep?s states (every 5 s) using real-time accelerometer data processed with an algorithm based on the linear discriminant analysis method. We trained a classifier on a PC using a public dataset, and then we ported it to the microcontroller. Preliminary tests show that the sheep?s state identification has a prediction success rate of 88%, opening exciting possibilities for developing an applicable device.
dc.languageen
dc.languagees
dc.rightsLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)
dc.subjectAccelerometers
dc.subjectMicrocontrollers
dc.subjectGlobal navigation satellite system
dc.subjectModems
dc.subjectBehavioral sciences
dc.subjectAnimals
dc.subjectTCPIP
dc.subjectAccelerometer signal processing
dc.subjectAnimal behavior
dc.subjectLow power embedded application
dc.subjectSistemas embebidos
dc.subjectBajo consumo
dc.subjectProcesamiento de señales
dc.subjectAcelerómetro
dc.subjectComportamiento animal
dc.titleWearable device to monitor sheep behavior.
dc.typePreprint


Este ítem pertenece a la siguiente institución