dc.contributorSolarte David, Víctor Alfonso
dc.contributorBecerra Bayona, Silvia Milena
dc.contributorSolarte David, Víctor Alfonso [0001329391]
dc.contributorBecerra Bayona, Silvia Milena [0001568861]
dc.contributorBecerra Bayona, Silvia Milena [5wr21EQAAAAJ]
dc.contributorSolarte David, Víctor Alfonso [0000-0002-9856-1484]
dc.contributorBecerra Bayona, Silvia Milena [0000-0002-4499-5885]
dc.contributorBecerra Bayona, Silvia Milena [36522328100]
dc.contributorBecerra Bayona, Silvia Milena [Silvia_Becerra-Bayona]
dc.creatorAgredo Hurtado, María Alejandra
dc.creatorBohórquez Vega, Nicolás Andrés
dc.creatorSerrano Cala, Andrea
dc.date.accessioned2022-09-16T15:31:42Z
dc.date.accessioned2023-06-12T20:11:51Z
dc.date.available2022-09-16T15:31:42Z
dc.date.available2023-06-12T20:11:51Z
dc.date.created2022-09-16T15:31:42Z
dc.date.issued2022
dc.identifierhttp://hdl.handle.net/20.500.12749/17710
dc.identifierinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifierreponame:Repositorio Institucional UNAB
dc.identifierrepourl:https://repository.unab.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6661694
dc.description.abstractLas úlceras por pie diabético son una de las complicaciones más comunes entre los pacientes que padecen Diabetes Mellitus, y la causa principal de amputaciones de miembro inferior en el mundo. Por esta razón, se han implementado nuevas técnicas para atenderlas, entre estas la impresión 3D que ha permitido la elaboración de diversos métodos de tratamiento. Este proyecto consiste en el diseño de un protocolo para la elaboración de moldes personalizados que permitan la obtención de apósitos tridimensionales que se ajusten a las necesidades de cada paciente, haciendo uso de las tecnologías de escaneo e impresión 3D. Se tomó como referencia una úlcera en zona plantar; se realizó una serie de escaneos, de los cuales se seleccionaron 4 para imprimir. De igual forma, se hicieron pruebas de impresión variando parámetros como la velocidad y densidad de relleno que juegan un papel importante en la adquisición de resultados. El material utilizado fue PLA, ya que gracias a su rigidez brindó la estabilidad necesaria para la creación de cada una de las carcasas. Se encontró que las dimensiones obtenidas de las carcasas realizadas aplicando este procedimiento presentan un porcentaje de error que no supera el 2,14% para el área superficial y 1,04% en profundidad, con respecto al modelo de úlcera. Estos resultados permitieron establecer que el protocolo diseñado, puede ser utilizado para la fabricación de apósitos personalizados. Sin embargo, aún existe variabilidad en los resultados, por lo que es importante continuar con la investigación en esta área.
dc.languagespa
dc.publisherUniversidad Autónoma de Bucaramanga UNAB
dc.publisherFacultad Ingeniería
dc.publisherPregrado Ingeniería Biomédica
dc.relationAhn, C., & Salcido, R. S. (2008). Advances in wound photography and assessment methods. Advances in Skin & Wound Care, 21(2). https://doi.org/10.1097/01.ASW.0000305411.58350.7d
dc.relationAmerican Diabetes Association. (2011). Diagnosis and Classification of Diabetes Mellitus. https://doi.org/10.2337/dc11-S062
dc.relationAnsari, A. A., & Kamil, M. (2021). Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process. Materials Today: Proceedings, 45, 5462–5468. https://doi.org/10.1016/j.matpr.2021.02.137
dc.relationAragón-Sánchez, J., Quintana-Marrero, Y., Aragón-Hernández, C., & Hernández-Herero, M. J. (2017). ImageJ: A Free, Easy, and Reliable Method to Measure Leg Ulcers Using Digital Pictures. International Journal of Lower Extremity Wounds, 16(4), 269–273. https://doi.org/10.1177/1534734617744951
dc.relationBlume, P. A., Walters, J., Payne, W., Ayala, J., & Lantis, J. (2008). Comparison of negative pressure wound therapy usingVacuum-assisted closure with advanced moist wound therapy in the treatment of diabetic foot ulcers. Diabetes Care, 31(4), 631–636. https://doi.org/10.2337/dc07-2196
dc.relationBus, S.A., Lavery, A. L., Monteiro-Soares, M., Rasmussen, A., Raspovic, A., Sacco, I. C. N., & Van Netten, J. J. (2019). IWGDF Guideline on the classification of diabetic foot ulcers. International Working Group on the Diabetic Foot, 1–15. https://iwgdfguidelines.org/wp content/uploads/2019/05/02-IWGDF-prevention-guideline 2019.pdf%0Ahttps://iwgdfguidelines.org/prevention-guideline/
dc.relationBus, Sicco A., Akkerman, E. M., & Maas, M. (2021). Changes in sub-calcaneal fat pad composition and their association with dynamic plantar foot pressure in people with diabetic neuropathy. Clinical Biomechanics, 88(April), 105441. https://doi.org/10.1016/j.clinbiomech.2021.105441
dc.relationConstantinou, G., Wilson, G., Sadeghi-Esfahlani, S., & Cirstea, M. (2017). An effective approach to the use of 3D scanning technology which shortens the development time of 3D models. Proceedings - 2017 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2017 and 2017 Intl Aegean Conference on Electrical Machines and Power Electronics, ACEMP 2017, 1083–1088. https://doi.org/10.1109/OPTIM.2017.7975116
dc.relationFoltynski, P., Ladyzynski, P., Ciechanowska, A., Migalska-Musial, K., Judzewicz, G., & Sabalinska, S. (2015). Wound area measurement with digital planimetry: Improved accuracy and precision with calibration based on 2 rulers. PLoS ONE, 10(8), 1–13. https://doi.org/10.1371/journal.pone.0134622
dc.relationGholami, P., Ahmadi-Pajouh, M. A., Abolftahi, N., Hamarneh, G., & Kayvanrad, M. (2018). Segmentation and Measurement of Chronic Wounds for Bioprinting. IEEE Journal of Biomedical and Health Informatics, 22(4), 1269–1277. https://doi.org/10.1109/JBHI.2017.2743526
dc.relationGhotaslou, R., Memar, M. Y., & Alizadeh, N. (2018). Classification, microbiology and treatment of diabetic foot infections. Journal of Wound Care, 27(7), 434–441. https://doi.org/10.12968/jowc.2018.27.7.434
dc.relationGlover, K., Mathew, E., Pitzanti, G., Magee, E., & Lamprou, D. A. (2022). 3D bioprinted scaffolds for diabetic wound-healing applications. In Drug Delivery and Translational Research. https://doi.org/10.1007/s13346-022-01115-8
dc.relationGlover, K., Stratakos, A. C., Varadi, A., & Lamprou, D. A. (2021). 3D scaffolds in the treatment of diabetic foot ulcers: New trends vs conventional approaches. International Journal of Pharmaceutics, 599(February), 120423. https://doi.org/10.1016/j.ijpharm.2021.120423
dc.relationGrennan, D. (2019). Diabetic Foot Ulcers. JAMA, 321(1), 114–114. https://doi.org/10.1001/JAMA.2018.18323
dc.relationJia, L., Parker, C. N., Parker, T. J., Kinnear, E. M., Derhy, P. H., Alvarado, A. M., Huygens, F., & Lazzarini, P. A. (2017). Incidence and risk factors for developing infection in patients presenting with uninfected diabetic foot ulcers. PLoS ONE, 12(5), 1–15. https://doi.org/10.1371/journal.pone.0177916
dc.relationJørgensen, L. B., Halekoh, U., Jemec, G. B. E., Sørensen, J. A., & Yderstræde, K. B. (2020). Monitoring Wound Healing of Diabetic Foot Ulcers Using Two-Dimensional and Three Dimensional Wound Measurement Techniques: A Prospective Cohort Study. Advances in Wound Care, 9(10), 553–563. https://doi.org/10.1089/wound.2019.1000
dc.relationKristiawan, R. B., Imaduddin, F., Ariawan, D., Ubaidillah, & Arifin, Z. (2021). A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Engineering, 11(1), 639–649. https://doi.org/10.1515/eng-2021-0063
dc.relationLangemo, D. K., Melland, H., Olson, B., Hanson, D., Hunter, S., Henly, S. J., & Thompson, P. (2001). Comparison of 2 Wound Volume Measurement Methods. Advances in Skin & Wound Care, 14(4). https://journals.lww.com/aswcjournal/Fulltext/2001/07000/Comparison_of_2_Wound_Volu me_Measurement_Methods.11.aspx
dc.relationLi, J., Ji, Q., Peng, J., Jun, L., Fusong, J., & Xiaowei, Y. (2019). Assessing diabetic foot injury based on 3D image technology. 2019 6th International Conference on Systems and Informatics, ICSAI 2019, Icsai, 1218–1221. https://doi.org/10.1109/ICSAI48974.2019.9010171
dc.relationLi, L., Yu, F., Shi, J., Shen, S., Teng, H., Yang, J., Wang, X., & Jiang, Q. (2017). In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Scientific Reports, 7(1), 1– 12. https://doi.org/10.1038/s41598-017-10060-3
dc.relationNunez, K. (2019). What Is Wound Debridement and When Is It Necessary? Healthline. https://www.healthline.com/health/debridement
dc.relationOrganización Mundial de la Salud (OMS). (2018). Informe mundial sobre la diabetes. Revista Virtual de La Sociedad Paraguaya de Medicina Interna, 3(2), 71–76.
dc.relationPartes del pie humano. (2022). Retrieved 28 June 2022, from https://www.partesdel.com/pie_humano.html
dc.relationPena, G., Kuang, B., Szpak, Z., Cowled, P., Dawson, J., & Fitridge, R. (2020). Evaluation of a Novel Three-Dimensional Wound Measurement Device for Assessment of Diabetic Foot Ulcers. Advances in Wound Care, 9(11), 623–631. https://doi.org/10.1089/wound.2019.0965
dc.relationPeter-Riesch, B. (2016). The diabetic foot: The never-ending challenge. Endocrine Development, 31, 108–134. https://doi.org/10.1159/000439409
dc.relationPrince, J. D. (2014). 3D Printing: An Industrial Revolution. Journal of Electronic Resources in Medical Libraries, 11(1), 39–45. https://doi.org/10.1080/15424065.2014.877247
dc.relationRismalia, M., Hidajat, S. C., Permana, I. G. R., Hadisujoto, B., Muslimin, M., & Triawan, F. (2019). Infill pattern and density effects on the tensile properties of 3D printed PLA material. Journal of Physics: Conference Series, 1402(4). https://doi.org/10.1088/1742 6596/1402/4/044041
dc.relationRokit. (n.d.). ROKIT INVIVO User Manual
dc.relationRosero, N., & Quitian, J. (2021). Diseño de una tinta de biomaterial de alginato y plasma pobre en plaquetas con potencial uso en la fabricación de apósitos personalizados para úlceras crónicas de pie diabético. Universidad Autónoma de Bucaramanga.
dc.relationShining 3D. (2020). EinScanH User Manual. November, 1–57. https://www.einscan.com/handheld-3d-scanner/einscan-h/
dc.relationSolarte David, V. A., Güiza-Argüello, V. R., Arango-Rodríguez, M. L., Sossa, C. L., & Becerra Bayona, S. M. (2022). Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling. Frontiers in Bioengineering and Biotechnology, 10(February), 1–26. https://doi.org/10.3389/fbioe.2022.821852
dc.relationTan, C. T., Liang, K., Ngo, Z. H., & Dube, C. T. (2020). Biomedicines-08-00441-V2 (2).Pdf. 1– 19.
dc.relationTreuillet, S., Albouy, B., & Lucas, Y. (2009). Three-dimensional assessment of skin wounds using a standard digital camera. IEEE Transactions on Medical Imaging, 28(5), 752–762. https://doi.org/10.1109/TMI.2008.2012025
dc.relationTümer, E. H., & Erbil, H. Y. (2021). Extrusion-based 3d printing applications of pla composites: A review. Coatings, 11(4), 1–42. https://doi.org/10.3390/coatings11040390
dc.relationVelazco, G., Gonzalez, A., & Ortiz, R. (2012). Apósitos de quitosano para el tratamiento de pie diabético ( Chitosan films for the diabetic foot treatment ) Resumen Introducción Resultados y Discusión Caso clínico. 1(1), 38–41
dc.relationYick, K. L., Lo, W. T., Ng, S. P., Yip, J., Kwan, H. H., Kwong, Y. Y., & Cheng, F. C. (2019). Analysis of insole geometry and deformity by using a three-dimensional image processing technique: A preliminary study. Journal of the American Podiatric Medical Association, 109(2), 98–107. https://doi.org/10.7547/16-116
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleDiseño de protocolo de escaneo y modelado 3D para la elaboración de apósitos personalizados para pacientes con úlceras de pie diabético


Este ítem pertenece a la siguiente institución