dc.contributor | Guerrero Dallos, Jairo Arturo | |
dc.contributor | Residualidad y Destino Ambiental de Plaguicidas en Sistemas Agricolas | |
dc.creator | Alzate Pérez, Diana Gabriela | |
dc.date.accessioned | 2023-01-16T16:36:38Z | |
dc.date.accessioned | 2023-06-06T22:52:46Z | |
dc.date.available | 2023-01-16T16:36:38Z | |
dc.date.available | 2023-06-06T22:52:46Z | |
dc.date.created | 2023-01-16T16:36:38Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82942 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6650945 | |
dc.description.abstract | Los ditiocarbamatos (DTC), específicamente mancozeb y propineb, son los fungicidas más vendidos en Colombia, estos son aplicados en una gran variedad de cultivos debido a su actividad fúngica de amplio espectro, además han sido reportados en los últimos años con gran frecuencia en los monitoreos de residuos de plaguicidas realizados por la Comisión Europea. Los DTC son analizados por métodos indirectos debido a su inestabilidad química y baja solubilidad, razón por la que su análisis presenta importantes retos. En el presente trabajo se implementó y evaluó dos metodologías para el análisis de residuos de ditiocarbamatos, específicamente para mancozeb y propineb en frutas y vegetales. Esto con el objetivo de brindar una herramienta para evaluar la calidad e inocuidad de alimentos en Colombia.
La primera metodología desarrollada fue propuesta como alternativa y solución a dificultades en la metodología oficial de la Comisión Europea. Esta consistió en la derivatización de mancozeb y propineb a los productos metilados Dimetil-etilenbisditiocarbamato (dimetil-EBDC) y Dimetil-propilenbisditiocarbamato (dimetil-PBDC), extracción con QuEChERS y análisis por Cromatografía Líquida de alta resolución con detector de arreglo de diodos. La metodología se optimizó y validó en una gran variedad de matrices, los resultados demostraron que es eficaz, precisa, lineal y selectiva puesto que permite identificar y separar los residuos de mancozeb y propineb. Se obtuvieron límites de cuantificación expresados como disulfuro de carbono por kilogramo de matriz de 0.059 mg CS2/ kg para Mancozeb (Dimetil-EBDC) y 0.065 mg CS2/kg para Propineb (Dimetil-PBDC) con coeficientes de variación menores al 20%. Adicionalmente, muestra que es adecuada para evaluar la calidad e inocuidad de frutas y vegetales de acuerdo con los límites máximos de residuos establecidos por el CODEX Alimentarius. La segunda metodología se basó en el método oficial de la Comisión Europea. Consiste en realizar una hidrolisis ácida al ditiocarbamato con el fin de producir disulfuro de carbono. Esta no es selectiva para la identificación individual de mancozeb y propineb, ya que el producto de transformación de ambos ditiocarbamatos es disulfuro de carbono. Se realizó la validación de la metodología y se demostró que es lineal, precisa, veraz y selectiva en matrices que no sean de las familias Brassicaceae y Alliaceae, ya que estas matrices producen disulfuro de carbono endógeno. El límite de cuantificación fue de 0.050 mg CS2/kg con coeficientes de variación menor al 20%, porcentajes de recuperación entre el rango de 70%-120%.
Por último, se evaluó la estabilidad de los residuos de mancozeb y propineb durante la etapa de procesamiento, se determinó a partir de pruebas estadísticas que el proceso de homogeneización a baja temperatura previene la degradación del ditiocarbamato. Las dos metodologías de análisis demostraron ser equivalentes para el cumplimiento de los límites máximos de residuos en ditiocarbamatos para frutas y vegetales, el método oficial presenta retos que pueden ser superados con el método por derivatización, lo cual permitiria, obtener más información sobre el origen del disulfuro de carbono, mejorar los monitoreos y disminuir la probabilidad de reportar falsos positivos (Texto tomado de la fuente) | |
dc.description.abstract | Dithiocarbamates (DTC), specifically mancozeb and propineb, are the best-selling fungicides in Colombia, these are applied in a wide variety of crops due to their broad-spectrum fungal activity, and have also been reported in recent years with great frequency in monitoring of pesticide residues carried out by the European Commission. DTCs are analyzed by indirect methods due to their chemical instability and low solubility, which is why their analysis presents important challenges. In the present work, two methodologies were implemented and evaluated for the analysis of dithiocarbamate residues, specifically for mancozeb and propineb in fruits and vegetables. This with the objective of providing a tool to evaluate the quality and safety of food in Colombia.
The first methodology developed was proposed as an alternative and solution to difficulties presented by the official methodology of the European Commission. This Consisted of the derivatization of mancozeb and propineb to the methylated products Dimethyl-EBDC and Dimethyl-PBDC, extraction with QuEChERS and analysis by High Performance Liquid Chromatography with diode array detector. It was optimized and validated in a wide variety of matrices, the results showed that this methodology is efficient, precise, linear and selective, it since it allows to identify and separate mancozeb and propineb residues. Quantification limits expresed as miligrams of carbon disulfide per kilogramo of matrix of 0.059 mg CS2/kg were obtained for Mancozeb (Dimethyl-EBDC) and 0.065 mg CS2/kg for Propineb (Dimethyl-PBDC) with coefficients of variation less than 20%. Additionally, the derivatization methodology is suitable for evaluating the quality and safety of fruits and vegetables in accordance with the maximum residue limits established by the CODEX Alimentarius.
The second methodology was based on the official method of the European Commission. This consists of carrying out an acid hydrolysis of the dithiocarbamate in order to produce carbon disulfide. This methodology is not selective for the individual identification of mancozeb and propineb, since the transformation product in both dithiocarbamates is carbon disulfide. The validation of the methodology was carried out and it was shown that it is linear, precise, truthful and selective in matrices that are not from the Brassicaceae and Alliaceae families, since these matrices produce endogenous carbon disulfide. The quantification limit was 0.050 mg CS2/kg with coefficients of variation less than 20%, recovery percentages between the range of 70%-120%.
Finally, the stability of mancozeb and propineb residues during the processing stage was evaluated, it was determined from statistical tests that the low temperature homogenization process prevents the degradation of dithiocarbamate. The two analysis methodologies proved to be equivalent for compliance with the maximum residue limits in dithiocarbamates for fruits and vegetables, the official method presents challenges that can be overcome with the derivatization method, which would allow obtaining more information on the origin of carbon disulfide, improve monitoring and reduce the probability of reporting false positives. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Química | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | 1. Hodson E, Castaño J, Poveda G, Roldan G. Food and Nutrition Security in Colombia [Internet]. 2017 [cited 2019 Jul 16]. Available from: https://cgspace.cgiar.org/bitstream/handle/10568/92502/Food and Nutrition Security in Colombia.pdf?sequence=1&isAllowed=y | |
dc.relation | 2. Ernesto Á, Peláez P. LINEAMIENTOS Y ESTRATEGIAS DE ARTICULACIÓN DE REPRESENTANTES EMPRESAS AGROINDUSTRIALES JUNIO DE 2017. 2017; | |
dc.relation | 3. FAO. Colombia - Nota de Análisis Sectorial: Agricultura y Desarrollo [Internet]. 2013 [cited 2019 Jul 16]. Available from: http://www.fao.org/3/a-ak167s.pdf | |
dc.relation | 4. MinSalud. Perfil nacional de consumo de frutas y verduras [Internet]. Fao. 2013. 263 p. Available from: http://www.osancolombia.gov.co/doc/Perfil_Nacional_Consumo_FyV_Colombia_2012.pdf | |
dc.relation | 5. Food and Agriculture Organization FAO. International Code of Conduct on the Distribution and Use of Pesticides: Guidelines for the Registration of Pesticides. Assessment [Internet]. 2010;(April):42pp. Available from: http://www.who.int/whopes/resources/resources_2010/en/ | |
dc.relation | 6. Elsa N. Los plaguicidas en Colombia. Semillas [Internet]. 2004 [cited 2019 Jul 17]; Available from: http://www.semillas.org.co/es/los-plaguicidas-en-colombia | |
dc.relation | 7. Instituto Colombiano Agropecuario I. Estadísticas de comercialización de plaguicidas químicos de uso agrícola 2015. | |
dc.relation | 8. Instituto Colombiano Agropecuario I. DE PLAGUICIDAS POR DE PLAGUICIDAS POR. 2019 | |
dc.relation | 9. Gullino ML, Tinivella F, Garibaldi A, Kemmitt GM, Bacci L, Sheppard B. Mancozeb: Past, Present, and Future. Plant Dis. 2010;94(9):1076–87. | |
dc.relation | 10. Suguiyama L. Toxicología Ambiental del Mancozeb y del ETU Propiedades Físico-Químicas | |
dc.relation | 11. Caldas ED, Conceição MH, Miranda MCC, De Souza LCKR, Lima JF. Determination of dithiocarbamate fungicide residues in food by a spectrophotometric method using a vertical disulfide reaction system. J Agric Food Chem. 2001;49(10):4521–5. | |
dc.relation | 12. Pizzutti IR, De Kok A, Da Silva RC, Rohers GN. Comparison between three chromatographic (GC-ECD, GC-PFPD and GC-ITD-MS) methods and a UV-Vis spectrophotometric method for the determination of dithiocarbamates in lettuce. J Braz Chem Soc. 2017;28(5):775–81. | |
dc.relation | 13. Abakerli RB, Sparrapan R, Sawaya ACHF, Eberlin MN, Jara JLP, Rodrigues NR, et al. Carbon disulfide formation in papaya under conditions of dithiocarbamate residue analysis. Food Chem [Internet]. 2015;188:71–6. Available from: http://dx.doi.org/10.1016/j.foodchem.2015.04.059 | |
dc.relation | 14. Crnogorac G, Schwack W. Residue analysis of dithiocarbamate fungicides. TrAC - Trends Anal Chem. 2009;28(1):40–50. | |
dc.relation | 15. Food E, Authority S. Modification of the existing MRLs for mancozeb in fresh peas ( without. 2010;8(January):1–27. | |
dc.relation | 16. López-Fernández O, Rial-Otero R, González-Barreiro C, Simal-Gándara J. Surveillance of fungicidal dithiocarbamate residues in fruits and vegetables. Food Chem. 2012;134(1):366–74. | |
dc.relation | 17. Gustafsson KH, Fahlgren CH. Determination of Dithiocarbamate Fungicides in Vegetable Foodstuffs by High-Performance Liquid Chromatography. J Agric Food Chem. 1983;31(2):461–3. | |
dc.relation | 18. Hayama T, Takada M. Simple and rapid method for the determination of ethylenebisdithiocarbamate fungicides in fruits and vegetables using liquid chromatography with tandem mass spectrometry. Anal Bioanal Chem. 2008;392(5):969–76. | |
dc.relation | 19. Özhan G, Alpertunga B. Liquid chromatographic analysis of maneb and its main degradation product, ethylenethiouera, in fruit juice. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess. 2008;25(8):961–70. | |
dc.relation | 20. Taylor P, Nakazawa H, Tsuda Y, Ito K, Yoshimura Y, Kubo H. Journal of Liquid Chromatography & Related Determination of Dithiocarbamate Fungicides by Reversed ‐ Phase Ion ‐ Pair Liquid Chromatography with Chemiluminescence Detection Determination of Dithiocarbamate Fungicides by Reversed-Phase Ion-Pair Liquid Chro. (October 2014):37–41. | |
dc.relation | 21. European Comission. Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed. Dir Gen Heal FOOD Saf. 2017;SANTE/1181. | |
dc.relation | 22. Hayama T, Yada K, Onimaru S, Yoshida H, Todoroki K, Nohta H, et al. Simplified method for determination of polycarbamate fungicide in water samples by liquid chromatography with tandem mass spectrometry following derivatization with dimethyl sulfate. J Chromatogr A. 2007;1141(2):251–8. | |
dc.relation | 23. Blasco C, Font G, Picó Y. Determination of dithiocarbamates and metabolites in plants by liquid chromatography-mass spectrometry. J Chromatogr A. 2004;1028(2):267–76. | |
dc.relation | 24. Union E. The 2017 European Union report on pesticide residues in food. 2019;17(396). | |
dc.relation | 25. Perz RC, Van Lishaut H, Schwack W. CS2 blinds in Brassica crops: False positive results in the dithiocarbamate residue analysis by the acid digestion method. J Agric Food Chem. 2000;48(3):792–6. | |
dc.relation | 26. Guidelines AE, Chemicals SA, Academy N. Committee on Acute Exposure Guideline Levels Committee on Toxicology Board on Environmental Studies and Toxicology Division on Earth and Life Studies. Vol. 7. | |
dc.relation | 27. Ayano Kakitani. A rapid and sensitive analysis of dithiocarbamate fungicides using modified QuEChERS method and liquid chromatography–tandem mass spectrometry. J Pestic Sci. 2017;42(4):145–150. | |
dc.relation | 28. FAO. PROPINEB. 1992; Available from:http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation93/propineb.pdf | |
dc.relation | 29. Yohanna N, Rodr V. Validación de metodologías analíticas para la determinación de productos de degradación de fungicidas ditiocarbamatos. 2013; | |
dc.relation | 30. Kwon D, Chung H, Shin W, Park Y, Kwon S. Toxicological evaluation of dithiocarbamate fungicide mancozeb on the endocrine functions in male rats. 2018;105–12. | |
dc.relation | 31. Kackar R, Srivastava MK, Raizada RB. Assessment of toxicological effects of mancozeb in male rats after chronic exposure *. 1999;37(1950):553–9. | |
dc.relation | 32. Axelstad M, Boberg J, Nellemann C, Kiersgaard M, Jacobsen PR, Christiansen S, et al. Exposure to the Widely Used Fungicide Mancozeb Causes Thyroid Hormone Disruption in Rat Dams but No Behavioral Effects in the Offspring. 2011;120(2):439–46. | |
dc.relation | 33. Peer review of the pesticide risk assessment of the active substance mancozeb _ Enhanced Reader.pdf. | |
dc.relation | 34. Service UF, St C, Durkin PR. Mancozeb : WorksheetMaker Workbook Documentation Final Report Submitted by : 2015. | |
dc.relation | 35. US EPA. Mancozeb Facts. Prev Pestic Toxic Subst. 2005;(Pd 4):1–6. | |
dc.relation | 36. States U, Substances T. Reregistration Eligibility Decision for Mancozeb. 2005;(September). | |
dc.relation | 37. OMS | ¿Residuos de plaguicidas en los alimentos? WHO [Internet]. 2016 [cited 2019 May 15]; Available from: https://www.who.int/features/qa/87/es/ | |
dc.relation | 38. Slorach SA, Administration NF. The regulation of chemical contaminants. 2001;13. | |
dc.relation | 39. Carrasco Cabrera L, Medina Pastor P. The 2019 European Union report on pesticide residues in food. Vol. 19, EFSA Journal. 2021. | |
dc.relation | 40. Abdourahime H, Anastassiadou M, Arena M, Auteri D, Barmaz S, Brancato A, et al. Abdourahime, H., Anastassiadou, M., Arena, M., Auteri, D., Barmaz, S., Brancato, A., Bura, L., Carrasco Cabrera, L., Chaideftou, E., Chiusolo, A., Court Marques, D., Crivellente, F., De Lentdecker, C., Egsmose, M., Fait, G., Ferreira, L., Gatto, V., Greco. EFSA J [Internet]. 2020 Dec 1 [cited 2022 Feb 28];18(12):e05755. Available from: https://onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2020.5755 | |
dc.relation | 41. Food Safety Authority E, Abdourahime H, Anastassiadou M, Arena M, Auteri D, Barmaz S, et al. Peer review of the pesticide risk assessment of the active substance Reynoutria sachalinensis extract. Journal [Internet]. 2019;18(12):5755. Available from: www.efsa.europa.eu/efsajournal | |
dc.relation | 42. Cómo garantiza Europa que los plaguicidas sean seguros [Internet]. [cited 2022 Feb 27]. Available from: https://multimedia.efsa.europa.eu/pesticides-authorisation/index.htm#activesubstances | |
dc.relation | 43. Alavanja MCR, Hoppin JA, Kamel F. HEALTH EFFECTS OF CHRONIC PESTICIDE EXPOSURE: Cancer and Neurotoxicity * 3. Annu Rev Public Heal [Internet]. 2004 [cited 2020 May 6];25:155–97. Available from:www.annualreviews.org | |
dc.relation | 44. Ntzani EE, Ntritsos G CM, Evangelou E, Tzoulaki I. Literature review on epidemiological studies linking exposure to pesticides and health effects. EFSA Support Publ. 2017 Mar 7;10(10). | |
dc.relation | 45. Sobhanzadeh E, Abu Bakar NK, Abas MR, Nemati K. Sample Preparation Methods for Pesticides Analysis in Food Matrices and Environmental Samples by Chromatography-Based Techniques: A Review. Malaysian J Fundam Appl Sci. 2014;5(2). | |
dc.relation | 46. Zhang L, Liu S, Cui X, Pan C, Zhang A, Chen F. A review of sample preparation methods for the pesticide residue analysis in foods. Cent Eur J Chem. 2012;10(3):900–25. | |
dc.relation | 47. Amvrazi EG, Albanis TA. Multiresidue method for determination of 35 pesticides in virgin olive oil by using liquid-liquid extraction techniques coupled with solid-phase extraction clean up and gas chromatography with nitrogen phosphorus detection and electron capture detection. J Agric Food Chem. 2006;54(26):9642–51. | |
dc.relation | 48. Walton HF. General considerations. Ligand Exch Chromatogr. 2018;7–30. | |
dc.relation | 49. Et A. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce [Internet]. Vol. 86, JOURNAL OF AOAC INTERNATIONAL. 2003 [cited 2021 Mar 28]. Available from: https://academic.oup.com/jaoac/article/86/2/412/5656996 | |
dc.relation | 50. Farías D (Universidad N. EVALUACION DE RESIDUOS DE PLAGUICIDAS EN TOMATE. Bogotá; 2004. | |
dc.relation | 51. European Comission. Analysis of Dithiocarbamate Residues in Foods of Plant Origin involving Cleavage into Carbon Disulfide , Partitioning into Isooctane and Determinative Analysis by GC-ECD 1 . Aim and Scope 2 . Safety Instructions 3 . Short Description of Procedure. 2005;1–12. | |
dc.relation | 52. Xu G, Nie J, Li H, Yan Z, Cheng Y. Determination of mancozeb residue in fruit by derivatization and a modified QuEChERS method using ultraperformance liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem. 2017;409(21):5057–63. | |
dc.relation | 53. López-Fernández O, Rial-Otero R, Simal-Gándara J. Factors governing the removal of mancozeb residues from lettuces with washing solutions. Food Control [Internet]. 2013;34(2):530–8. Available from: http://dx.doi.org/10.1016/j.foodcont.2013.05.022 | |
dc.relation | 54. Zhou L, Xu J, Luan L, Ma J, Gong Y, Qin D, et al. Optimization and validation of a method based on derivatization with methylating agent followed by HPLC-DAD for determining dithiocarbamates residues. Acta Chromatogr. 2013;25(4):613–25. | |
dc.relation | 55. Petha NH, Lokhande RS, Seshadri DT, Patil RM, Bhagat TS, Patil JG. A simple pre-column derivatization method for the determination of mancozeb technical (fungicide) by reverse phase HPLC-UV. Anal Methods [Internet]. 2017;9(32):4702–8. Available from: http://dx.doi.org/10.1039/C7AY00830A | |
dc.relation | 56. Gustafsson KH, Thompson RA. High-Pressure Liquid Chromatographic Determination of Fungicidal Dithiocarbamates. J Agric Food Chem. 1981;29(4):729–32. | |
dc.relation | 57. Atienza J, Jimenez JJ, Alvarez J, Martin MT, Toribio L. Extraction With Edta/Methanol And Supercritical Carbon Dioxide For The Analysis Of Ziram Residues On Spinach. Toxicol Environ Chem. 1994;45(3–4):179–87. | |
dc.relation | 58. Mujawar S, Utture SC, Fonseca E, Matarrita J, Banerjee K. Validation of a GC-MS method for the estimation of dithiocarbamate fungicide residues and safety evaluation of mancozeb in fruits and vegetables. Food Chem [Internet]. 2014;150:175–81. Available from: http://dx.doi.org/10.1016/j.foodchem.2013.10.148 | |
dc.relation | 59. Dh KMOJ, Makoto TJ, Bdid SN. A new method for the determination of dithiocarbamate.pdf. 2010;(October):213–9. | |
dc.relation | 60. Schmidt B, Christensen HB, Petersen A, Sloth JJ, Poulsen ME. Method validation and analysis of nine dithiocarbamates in fruits and vegetables by LC-MS/MS. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess. 2013;30(7):1287–98. | |
dc.relation | 61. Barreto AV. Implementación y validación de una metodología analíticia para la determinación de etilentiourea en orina y parches de extracción. Bogotá: Rev. Col. Cienc. Quím. Farm; 2003. p. 32 (1), 51–7. | |
dc.relation | 62. Glosario de términos sobre garantía de calidad y buenas prácticas de laboratorio. | |
dc.relation | 63. Edition T. Guide to Quality in Analytical Chemistry. 2016. | |
dc.relation | 64. Jimenez J. Evaluación de la contaminación por bifenilos policlorados (PCB: 28, 52, 101, 118,138, 153 y 180) en leche cruda bovina de los departamentos de Cundinamarca, Antioquia, Nariño, Quindío y Boyacá por cromatografía de gases con detector de microcaptura de ele. 2018; | |
dc.relation | 65. Corley J. Best practices in establishing detection and quantification limits for pesticide residues in foods. Handb Residue Anal Methods Agrochem. 2003;409(c):1–18. | |
dc.relation | 66. Alejandro D, Forigua A. Reducción del efecto matriz en el análisis de residuos de Plaguicidas mediante Cromatografía de gases. 2010; | |
dc.relation | 67. España Amórtegui JC, Guerrero Dallos JA. Practical aspects in gas chromatography-mass spectrometry for the analysis of pesticide residues in exotic fruits. Food Chem. 2015;182:14–22. | |
dc.relation | 68. MacBean C (Colin), British Crop Protection Council. The pesticide manual- Supplementary Entries- Extended. MacBean C, editor. 2012;1439. | |
dc.relation | 69. Li J, Dong C, Yang Q, An W, Zheng ZT, Jiao B. Simultaneous Determination of Ethylenebisdithiocarbamate (EBDC) and Propylenebisdithiocarbamate (PBDC) Fungicides in Vegetables, Fruits, and Mushrooms by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. Food Anal Methods. 2019;2045–55. | |
dc.relation | 70. Tujia P., Amadeo F., Carmen F., Mette E., Bjöm H. MA. ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED. SANTE 11312/2021. 2021 | |
dc.relation | 71. Monzón D, Monzón Paiva D. Introducción al diseño de experimentos. Rev la Fac Agron la Univ Cent Venez. 1992;(Alcance 34):167 p. | |
dc.relation | 72. Kobayashi H, Nishida M, Matano O, Goto S. Effect of Cysteine on the Stability of Ethylenethiourea and Ethylenebis(dithiocarbamate) in Crops during Storage and/or Analysis. J Agric Food Chem. 1992;40(1):76–80. | |
dc.relation | 73. Version E, Quechers A. Analysis of Acidic Pesticides using QuEChERS ( EN15662 ) and acidified QuEChERS method Subject : Analytical observations report concerning the following … Brief description : Apparatus and Consumables : Acidified QuEChERS ( A-QuEChERS ): Measurement : 2015;1:1–2. | |
dc.relation | 74. Gilbert-López B, García-Reyes JF, Molina-Díaz A. Sample treatment and determination of pesticide residues in fatty vegetable matrices: A review. Talanta. 2009;79(2):109–28. | |
dc.relation | 75. Yang Y, Ye M, Trinh A, Henderson T, Road NH. Application of PSA and Carbon / PSA SPE Cartridges for Cleanup of Vegetables , Foods and Fruit Extracts. | |
dc.relation | 76. Miller J, Miller J. Métodos de Calibración en Análisis Instrumental: Regresión y Correlación. Estadísitica y Quimiometría para Química Analítica. 2002. p. 120–34. | |
dc.relation | 77. Zhou W, Yang S, Wang PG. Matrix effects and application of matrix effect factor. Bioanalysis. 2017;9(23):1839–44. | |
dc.relation | 78. Durante I, Procesamiento EL, Erazo A, Guerrero JA. Uncertainty During Sample Processing of Fruits. 2006;(2):163–75. | |
dc.relation | 79. Bao SF. MÁSTER UNIVERSITARIO EN INGENIERÍA QUÍMICA DISEÑO DE EXPERIMENTOS : DISEÑO FACTORIAL Memoria y Anexos. 2020; | |
dc.relation | 80. López DR. de plaguicidas en miel de abejas provenientes de los departamentos de Boyacá , Cundinamarca , Magdalena y Santander Evaluación de la presencia de residuos de plaguicidas en miel de abejas provenientes de los departamentos de Boyacá , Cundinamarca , Magdal. 2011; | |
dc.relation | 81. Dasgupta S, Mujawar S, Banerjee K, Huebschmann H. Analysis of Dithiocarbamate Pesticides by GC-MS. Thermo Sci. 2012;3–7. | |
dc.relation | 82. Fussell RJ, Hetmanski MT, Colyer A, Caldow M, Smith F, Findlay D, et al. Assessment of the Stability of Pesticides During the Cryogenic Processing of Fruits and Vegetables To cite this version : r P Fo r R w On ly. 2011. | |
dc.relation | 83. Roussev M, Lehotay SJ, Pollaehne J. Cryogenic Sample Processing with Liquid Nitrogen for E ff ective and. J Agric Food Chem. 2019;67:9203–9. | |
dc.relation | 84. Ambrus Á. Measurement Uncertainty Associated with Sample Processing of Oranges and Tomatoes for Pesticide Residue Analysis Related papers. | |
dc.relation | 85. OMS. Comisión del Codex Alimentarius: Manual de procedimiento. [Internet]. Codex Alimentarius - Joint FAO/WHO Food Standards Programme. 2013. 255 p. Available from: http://www.fao.org/publications/card/es/c/CA2329ES | |
dc.relation | 86. Waddington G, Smith JC, Williamson KD, Scott DW. CARBON DISULFIDE AS A REFERENCE SUBSTANCE FOR VAPOR-FLOW CALORIMETRY; THE CHEMICAL THERMODYNAMIC PROPERTIES. J Phys Chem. 1962;66(6):1074–7. | |
dc.relation | 87. Dass C. Fundamentals of Contemporary Mass Spectrometry. Fundamentals of Contemporary Mass Spectrometry. 2006. 1–585 p. | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Evaluar dos metodologías para el análisis de residuos de los fungicidas mancozeb y propineb en frutas y vegetales como alternativas de análisis de su calidad e inocuidad | |
dc.type | Trabajo de grado - Maestría | |