dc.creator | Lain Beatove, Santiago | |
dc.creator | Lozano Parada, Jaime H. | |
dc.creator | Guzmán, Javier | |
dc.date.accessioned | 2023-05-04T20:21:11Z | |
dc.date.accessioned | 2023-06-06T14:27:29Z | |
dc.date.available | 2023-05-04T20:21:11Z | |
dc.date.available | 2023-06-06T14:27:29Z | |
dc.date.created | 2023-05-04T20:21:11Z | |
dc.date.issued | 2022-04 | |
dc.identifier | 20763417 | |
dc.identifier | https://hdl.handle.net/10614/14697 | |
dc.identifier | Universidad Autónoma de Occidente | |
dc.identifier | Repositorio Educativo Digital UAO | |
dc.identifier | https://red.uao.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6649375 | |
dc.description.abstract | In this contribution, an unsteady numerical simulation of the flow in a microfluidic oscillator
has been performed. The transient turbulent flow inside the device is described by the Unsteady
Reynolds Averaged Navier–Stokes equations (URANS) coupled with proper turbulence models.
The main characteristics of the complex fluid flow inside the device along one oscillation cycle was
analyzed in detail, including not only velocity contours but also the pressure and turbulent kinetic
energy fields. As a result, two-dimensional simulations provided good estimations of the operating
frequency of the fluidic actuator when compared with experimental measurements in a range of
Reynolds numbers. Moreover, with the objective of altering the operating frequency of the apparatus
and, in order to adapt it to different applications, geometrical modifications of the feedback channels
were proposed and evaluated. Finally, a fully three-dimensional simulation was carried out, which
allowed for the identification of intricate coherent structures revealing the complexity of the turbulent
flow dynamics inside the fluidic oscillator | |
dc.language | eng | |
dc.publisher | MDPI | |
dc.publisher | Basel, Suiza | |
dc.relation | 16 | |
dc.relation | 7 | |
dc.relation | 1 | |
dc.relation | 12 | |
dc.relation | Laín Beatove, S., Lozano Parada, J.H., Guzmán, J. (2022). Computational Characterization of Turbulent Flow in a Microfluidic Actuator. Applied sciences, vol. 12,(7), pp. 1-16 | |
dc.relation | Applied sciences | |
dc.relation | 1. Tesar, V. Taxonomic trees of fluidic oscillators. EPJ Web Conf. 2017, 143, 02128. [CrossRef] | |
dc.relation | 2. Ghanami, S.; Farhadi, M. Fluidic Oscillators Applications, Structures and Mechanisms—A review. Trans. Phenom. Nano Micro Scales 2019, 7, 9–27. | |
dc.relation | 3. Guzmán, J.; Lozano-Parada, J.H.; Zimmerman, W.B.J.; Laín, S. Numerical simulation of the transient behavior of the turbulent flow in a microfluidic oscillator. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 29. [CrossRef] | |
dc.relation | 4. Adhikari, A.; Schweitzer, T.; Lückoff, F.; Oberleithner, K. Design of a Fluidic Actuator with Independent Frequency and Amplitude Modulation for Control of Swirl Flame Dynamics. Fluids 2021, 6, 128. [CrossRef] | |
dc.relation | 5. Cosi´c, B.; Waßmer, D.; Genin, F. Integration of Fluidic Nozzles in the New Low Emission Dual Fuel Combustion System for MGT ´ Gas Turbines. Fluids 2021, 6, 129. [CrossRef] | |
dc.relation | 6. Koklu, M. Performance Assessment of Fluidic Oscillators Tested on the NASA Hump Model. Fluids 2021, 6, 74. [CrossRef] | |
dc.relation | 7. Schweitzer, T.; Hörmann, M.; Bühling, B.; Bobusch, B. Switching Action of a Bistable Fluidic Amplifier for Ultrasonic Testing. Fluids 2021, 6, 171. [CrossRef] | |
dc.relation | 8. Löffler, S.; Ebert, C.; Weiss, J. Fluidic-Oscillator-Based Pulsed Jet Actuators for Flow Separation Control. Fluids 2021, 6, 166. [CrossRef] | |
dc.relation | 9. Fink, A.; Nett, O.; Schmidt, S.; Krüger, O.; Ebert, T.; Trottner, A.; Jander, B. Free Stream Behavior of Hydrogen Released from a Fluidic Oscillating Nozzle. Fluids 2021, 6, 245. [CrossRef] | |
dc.relation | 10. Liebsch, J.; Paschereit, C.O. Oscillating Wall Jets for Active Flow Control in a Laboratory Fume Hood—Experimental Investigations. Fluids 2021, 6, 279. [CrossRef] | |
dc.relation | 11. Pandhal, J.; Siswanto, A.; Kuvshinov, D.; Zimmerman, W.B.; Lawton, L.; Edwards, C. Cell Lysis and Detoxification of Cyanotoxins Using a Novel Combination of Microbubble Generation and Plasma Microreactor Technology for Ozonation. Front. Microbiol. 2018, 9, 678. [CrossRef] | |
dc.relation | 12. Lozano-Parada, J.H.; Zimmerman, W.B.J. The role of kinetics in the design of plasma microreactors. Chem. Eng. Sci. 2010, 65, 4925–4930. [CrossRef] | |
dc.relation | 13. Tesar, V. Fluidic Oscillators Mediating Generation of Microbubbles (Survey). Fluids 2021, 6, 77. [CrossRef] | |
dc.relation | 14. Bobusch, B.C.; Woszidlo, R.; Bergada, J.M.; Nayeri, C.N.; Paschereit, C.O. Experimental Study of the Internal Flow Structures inside a Fluidic Oscillator. Exp. Fluids 2013, 54, 1559. [CrossRef] | |
dc.relation | 15. Krüger, O.; Bobusch, B.; Woszidlo, R.; Paschereit, C. Numerical Modeling and Validation of the Flow in a Fluidic Oscillator. In Proceedings of the 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, USA, 27 June 2013; p. AIAA2013-3087. | |
dc.relation | 16. Baghaei, M.; Bergada, J.M.; del Campo, D.; del Campo, V. Research on Fluidic Amplifiers Dimensional Modifications via Computer Simulation (CFD). In Proceedings of the 9th International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, 11–15 July 2016; p. 256. | |
dc.relation | 17. Laín, S.; García, J.A. Study of four-way coupling on turbulent particle-laden jet flows. Chem. Eng. Sci. 2006, 61, 6775–6785. [CrossRef] | |
dc.relation | 18. Menter, F. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA. J. 1994, 32, 269–289. [CrossRef] | |
dc.relation | 19. Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [CrossRef] | |
dc.relation | 20. Launder, B.E.; Reece, G.J.; Rodi, W. Progress in the Development of a Reynolds-stress Turbulence Closure. J. Fluid Mech. 1975, 68, 537–566. [CrossRef] | |
dc.relation | 21. Langtry, R.B.; Menter, F. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 2009, 47, 2894–2906. [CrossRef] | |
dc.relation | 22. Jizu Lv, P.W.; Bai, M.; Wang, Y.; Hu, C. Numerical investigation of the flow and heat behaviours of an impinging jet. Int. J. Comput. Fluid Dyn. 2014, 28, 301–315. | |
dc.relation | 23. Laín, S.; Taborda, M.A.; López, O.D. Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies 2018, 11, 297. [CrossRef] | |
dc.relation | 24. Karbasian, H.R.; Kim, K.C. Numerical investigations on flow structure and behavior of vortices in the dynamic stall of an oscillating pitching hydrofoil. Ocean. Eng. 2016, 127, 200–211. [CrossRef] | |
dc.relation | 25. Hærvig, J.; Sørensen, K.; Condra, T.J. On the fully-developed heat transfer enhancing flow field in sinusoidally, spirally corrugated tubes using computational fluid dynamics. Int. J. Heat Mass Transf. 2017, 106, 1051–1062. [CrossRef] | |
dc.relation | 26. Sudo, K.; Sumida, M.; Hibara, H. Experimental investigation of turbulent flow in a square-sectioned 90-degree bend. Exp. Fluids 2001, 30, 246–252. [CrossRef] | |
dc.relation | 27. Sommerfeld, M.; Laín, S. Parameters influencing dilute-phase pneumatic conveying through pipe systems: A computational study by the Euler/Lagrange approach. Can. J. Chem. Eng. 2015, 93, 1–17. [CrossRef] | |
dc.relation | 28. Hunt, J.C.R.; Wray, A.A.; Moin, P. Eddies, streams, and convergence zones in turbulent flows. Cent. Turbul. Res. Proc. Summer Program. 1988, 1, 193–208. | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | Derechos reservados - MDPI, 2022 | |
dc.title | Computational characterization of turbulent flow in a microfluidic actuator | |
dc.type | Artículo de revista | |