dc.date.accessioned | 2019-08-18T04:08:57Z | |
dc.date.accessioned | 2023-05-31T19:05:13Z | |
dc.date.available | 2019-08-18T04:08:57Z | |
dc.date.available | 2023-05-31T19:05:13Z | |
dc.date.created | 2019-08-18T04:08:57Z | |
dc.date.issued | 2017-08 | |
dc.identifier | Nieto Chaupis, H. ((Agosto, 2017). Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions. En XXIV International Conference on Electronics, Electrical Engineering and Computing, Perú. | |
dc.identifier | http://repositorio.uch.edu.pe/handle/uch/330 | |
dc.identifier | http://dx.doi.org/10.1109/INTERCON.2017.8079636 | |
dc.identifier | https://ieeexplore.ieee.org/abstract/document/8079636 | |
dc.identifier | 10.1109/INTERCON.2017.8079636 | |
dc.identifier | IEEE International Congress on Electronics, Electrical Engineering and Computing, INTERCON | |
dc.identifier | 2-s2.0-85040006154 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6495648 | |
dc.description.abstract | We presented a generalization of the delay-and-sum beamforming based on the Dirac-Delta functions but with nonlinear argument. For this end, a closed-form expression of the beampattern mathcal{B}(r)=\sum\nolimits-{k,q}w(k,q,r)x(k,q,r) with r = r(θ), was derived. This expression is computationally simulated through an algorithm that includes integer-order Bessel input functions and random noise. The 4M+N model parameters provided by the Dirac-Delta method are extracted by using a Monte-Carlo-like step which selects the best values for B(r) minimizing the Monte-Carlo error for Δθ = 0.5% for the case of beam response of θ0=30 degrees. These results might sustain the fact that beamforming techniques can use Dirac-Delta functions for modeling arrival signal even in those cases where strong nonlinearity is involved. | |
dc.language | eng | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.relation | info:eu-repo/semantics/article | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.source | Repositorio Institucional - UCH | |
dc.source | Universidad de Ciencias y Humanidades | |
dc.subject | Beamforming | |
dc.subject | Monte Carlo methods | |
dc.subject | Beamforming technique | |
dc.subject | Closed-form expression | |
dc.subject | Delay and sum beamforming | |
dc.subject | Delay and sums | |
dc.subject | Dirac delta function | |
dc.subject | Input functions | |
dc.subject | Model parameters | |
dc.subject | Strong nonlinearity | |
dc.subject | Delta functions | |
dc.title | Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions | |
dc.type | info:eu-repo/semantics/conferenceObject | |