dc.date.accessioned2019-08-18T04:08:57Z
dc.date.accessioned2023-05-31T19:05:13Z
dc.date.available2019-08-18T04:08:57Z
dc.date.available2023-05-31T19:05:13Z
dc.date.created2019-08-18T04:08:57Z
dc.date.issued2017-08
dc.identifierNieto Chaupis, H. ((Agosto, 2017). Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions. En XXIV International Conference on Electronics, Electrical Engineering and Computing, Perú.
dc.identifierhttp://repositorio.uch.edu.pe/handle/uch/330
dc.identifierhttp://dx.doi.org/10.1109/INTERCON.2017.8079636
dc.identifierhttps://ieeexplore.ieee.org/abstract/document/8079636
dc.identifier10.1109/INTERCON.2017.8079636
dc.identifierIEEE International Congress on Electronics, Electrical Engineering and Computing, INTERCON
dc.identifier2-s2.0-85040006154
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6495648
dc.description.abstractWe presented a generalization of the delay-and-sum beamforming based on the Dirac-Delta functions but with nonlinear argument. For this end, a closed-form expression of the beampattern mathcal{B}(r)=\sum\nolimits-{k,q}w(k,q,r)x(k,q,r) with r = r(θ), was derived. This expression is computationally simulated through an algorithm that includes integer-order Bessel input functions and random noise. The 4M+N model parameters provided by the Dirac-Delta method are extracted by using a Monte-Carlo-like step which selects the best values for B(r) minimizing the Monte-Carlo error for Δθ = 0.5% for the case of beam response of θ0=30 degrees. These results might sustain the fact that beamforming techniques can use Dirac-Delta functions for modeling arrival signal even in those cases where strong nonlinearity is involved.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relationinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.sourceRepositorio Institucional - UCH
dc.sourceUniversidad de Ciencias y Humanidades
dc.subjectBeamforming
dc.subjectMonte Carlo methods
dc.subjectBeamforming technique
dc.subjectClosed-form expression
dc.subjectDelay and sum beamforming
dc.subjectDelay and sums
dc.subjectDirac delta function
dc.subjectInput functions
dc.subjectModel parameters
dc.subjectStrong nonlinearity
dc.subjectDelta functions
dc.titleGeneralization of the classical delay-and-sum technique by using nonlinear dirac-delta functions
dc.typeinfo:eu-repo/semantics/conferenceObject


Este ítem pertenece a la siguiente institución