dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.contributor | Universidade de São Paulo (USP) | |
dc.date.accessioned | 2019-10-06T16:41:26Z | |
dc.date.accessioned | 2022-12-19T18:55:09Z | |
dc.date.available | 2019-10-06T16:41:26Z | |
dc.date.available | 2022-12-19T18:55:09Z | |
dc.date.created | 2019-10-06T16:41:26Z | |
dc.date.issued | 2019-07-24 | |
dc.identifier | Physical Review A, v. 100, n. 1, 2019. | |
dc.identifier | 2469-9934 | |
dc.identifier | 2469-9926 | |
dc.identifier | http://hdl.handle.net/11449/189461 | |
dc.identifier | 10.1103/PhysRevA.100.012128 | |
dc.identifier | 2-s2.0-85069841168 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/5370499 | |
dc.description.abstract | Here we introduce the all-creation and all-annihilation time-dependent (TD) PT-symmetric bosonic Hamiltonians, which in the interaction picture are described only by creation or annihilation operators. These Hamiltonians are defined from the most general TD PT-symmetric quadratic bosonic Hamiltonian, describing a cavity mode under linear and parametric amplifications. After presenting a general ansatz for the derivation of the TD Dyson map and metric operators, we solve the Schrödinger equations for both the PT-symmetric Hamiltonian and its Hermitian counterpart. We then compute analytically the squeezing degree coming from the all-annihilation Hamiltonian and compare the result with that coming from an ordinary Hermitian Hamiltonian, showing a crucial result for interferometric procedures: instead of the asymptotic divergence of the squeezing degree that takes place for a Hermitian parametric pumping, the all-annihilation amplification leads to a divergence of that quantity at a finite controllable time. | |
dc.language | eng | |
dc.relation | Physical Review A | |
dc.rights | Acesso aberto | |
dc.source | Scopus | |
dc.title | All-creation and all-annihilation time-dependent PT -symmetric bosonic Hamiltonians: An infinite squeezing degree at a finite time | |
dc.type | Artículos de revistas | |