dc.contributorJerez Hanckes, Carlos
dc.date.accessioned2021-11-23T12:08:02Z
dc.date.accessioned2022-11-08T20:37:25Z
dc.date.available2021-11-23T12:08:02Z
dc.date.available2022-11-08T20:37:25Z
dc.date.created2021-11-23T12:08:02Z
dc.identifierhttps://repositorio.uai.cl//handle/20.500.12858/2806
dc.identifier10.1007/s00020-020-2572-9
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5148329
dc.description.abstractWe study the mapping properties of boundary integral oper_x005F_x0002_ators arising when solving two-dimensional, time-harmonic waves scat_x005F_x0002_tered by periodic domains. For domains assumed to be at least Lipschitz regular, we propose a novel explicit representation of Sobolev spaces for quasi-periodic functions that allows for an analysis analogous to that of Helmholtz scattering by bounded objects. Except for Rayleigh-Wood frequencies, continuity and coercivity results are derived to prove well_x005F_x0002_posedness of the associated first kind boundary integral equati
dc.titleOn the Properties of Quasi-periodic Boundary Integral Operators for the Helmholtz Equation.
dc.typeArtículo Scopus


Este ítem pertenece a la siguiente institución