dc.creatorMarzagão, Thiago
dc.creatorFerreira, Rodrigo
dc.creatorSales, Leonardo
dc.date2021-07-07
dc.date.accessioned2022-11-03T20:57:57Z
dc.date.available2022-11-03T20:57:57Z
dc.identifierhttps://bibliotecadigital.fgv.br/ojs/index.php/rbe/article/view/79823
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/5044286
dc.descriptionBrazilian banks commonly use linear regression to appraise real estate: they regress price on features like area, location, etc, and use the resulting model to estimate the market value of the target property. But Brazilian banks do not test the predictive performance of those models, which for all we know are no better than random guesses. That introduces huge inefficiencies in the real estate market. Here we propose a machine learning approach to the problem. We use real estate data scraped from 15 thousand online listings and use it to fit a boosted trees model. The resulting model has a median absolute error of 8,16%. We provide all data and source code.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherEGV EPGEpt-BR
dc.relationhttps://bibliotecadigital.fgv.br/ojs/index.php/rbe/article/view/79823/79909
dc.rightsCopyright (c) 2021 Revista Brasileira de Economiapt-BR
dc.sourceRevista Brasileira de Economia; Vol. 75 No. 1 (2021): JAN-MAR; 29-36en-US
dc.sourceRevista Brasileira de Economia; v. 75 n. 1 (2021): JAN-MAR; 29-36pt-BR
dc.source1806-9134
dc.source0034-7140
dc.subjectreal estateen-US
dc.subjecthedonic pricingen-US
dc.subjectmarket behavioren-US
dc.titleA note on real estate appraisal in Brazilen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArticlesen-US
dc.typeArtigospt-BR


Este ítem pertenece a la siguiente institución