dc.creatorFerrer, Daniel
dc.creatorGonzález, Ramiro
dc.creatorFleitas, Roberto
dc.creatorPérez Acle, Julio
dc.creatorCanetti, Rafael
dc.date.accessioned2019-07-03T16:36:20Z
dc.date.accessioned2022-10-28T19:53:50Z
dc.date.available2019-07-03T16:36:20Z
dc.date.available2022-10-28T19:53:50Z
dc.date.created2019-07-03T16:36:20Z
dc.date.issued2004
dc.identifierFerrer, D., González, R, Fleitas, Roberto, Pérez Acle, J., Canetti, R. NeuroFPGA : Implementing artificial neural networks on programmable logic devices [en línea] Design, Automation and Test in Europe Conference and Exhibition, Paris, France, 2004
dc.identifierhttps://hdl.handle.net/20.500.12008/21281
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4975491
dc.description.abstractAn FPGA implementation of a multilayer perceptron neural network is presented. The system is parameterized both in network related aspects (e.g.: number of layers and number of neurons in each layer) and implementation parameters (e.g.: word width, pre-scaling factors and number of available multipliers). This allows to use the design for different network realizations, or to try different area-speed trade-offs simply by recompiling the design. Fixed point arithmetic with pre-scaling configurable in a per layer basis was used. The system was tested on an ARC-PCI board from altera/spl trade/ several examples from different application domains were implemented showing the flexibility and ease of use of the obtained circuit. Even with the rather old board used, an appreciable speed-up was obtained compared with a software-only implementation based on Matlab neural network toolbox.
dc.publisherIEEE
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)
dc.subjectArtificial neural networks
dc.subjectProgrammable logic devices
dc.subjectCircuit testing
dc.titleNeuroFPGA : Implementing artificial neural networks on programmable logic devices
dc.typeArtículo


Este ítem pertenece a la siguiente institución