dc.creatorVillegas, Cesar E. P.
dc.creatorLeite, Marina S.
dc.creatorMarini, Andrea
dc.creatorRocha, Alexandre R.
dc.date.accessioned2022-04-29T20:08:59Z
dc.date.accessioned2022-10-24T16:21:04Z
dc.date.available2022-04-29T20:08:59Z
dc.date.available2022-10-24T16:21:04Z
dc.date.created2022-04-29T20:08:59Z
dc.date.issued2022-04-05
dc.identifierVillegas, C., ...[et al.]. (2022). Efficient hot carrier dynamics in near-infrared photocatalytic metals. Physical Review B, 105(16). https://doi.org/10.1103/PhysRevB.105.165109
dc.identifierhttps://hdl.handle.net/11537/30149
dc.identifierPhysical Review B
dc.identifierhttps://doi.org/10.1103/PhysRevB.105.165109
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4727798
dc.description.abstractPhotoexcited metals can produce highly energetic hot carriers whose controlled generation and extraction is a promising avenue for technological applications. While hot-carrier dynamics in Au-group metals have been widely investigated, a microscopic description of the dynamics of photoexcited carriers in the mid-infrared and near-infrared Pt-group metals range is still scarce. Since these materials are widely used in catalysis and, more recently, in plasmonic catalysis, their microscopic carrier dynamics characterization is crucial. We employ ab initio many-body perturbation theory to investigate the hot-carrier generation, relaxation times, and mean free path in bulk Pd and Pt. We show that the direct optical transitions of photoexcited carriers in these metals are mainly generated in the near-infrared range. We also find that the electron-phonon mass enhancement parameter for Pt is 16% higher than Pd, a result that helps explain several experimental results showing diverse trends. Moreover, we predict that Pd (Pt) hot electrons possess total relaxation times of up to 35 fs (24 fs), taking place at approximately 0.5 eV (1.0 eV) above the Fermi energy. Finally, an efficient hot electron generation and extraction can be achieved in nanofilms of Pd (110) and Pd (100) when subject to excitation energies ranging from 0.4 to 1.6 eV.
dc.languageeng
dc.publisherAmerican Physical Society
dc.publisherUS
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.sourceUniversidad Privada del Norte
dc.sourceRepositorio Institucional - UPN
dc.subjectMetales
dc.subjectDinámica
dc.subjectEnergía
dc.subjectElectrónica
dc.titleEfficient hot carrier dynamics in near-infrared photocatalytic metals
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución