dc.creatorGuzmán-Lastra, Francisca [Univ Mayor, Fac Ciencias]
dc.creatorDaddi-Moussa-Ider, Abdallah
dc.creatorGoh, Segun
dc.creatorLiebchen, Benno
dc.creatorHoell, Christian
dc.creatorMathijssen, Arnold J. T. M.
dc.creatorScholz, Christian
dc.creatorMenzel, Andreas M.
dc.creatorLoewen, Hartmut
dc.date.accessioned2020-04-12T14:11:55Z
dc.date.accessioned2020-04-14T15:28:51Z
dc.date.accessioned2022-10-18T18:41:11Z
dc.date.available2020-04-12T14:11:55Z
dc.date.available2020-04-14T15:28:51Z
dc.date.available2022-10-18T18:41:11Z
dc.date.created2020-04-12T14:11:55Z
dc.date.created2020-04-14T15:28:51Z
dc.date.issued2019
dc.identifierDaddi-Moussa-Ider, A., Goh, S., Liebchen, B., Hoell, C., Mathijssen, A. J., Guzmán-Lastra, F., ... & Löwen, H. (2019). Membrane penetration and trapping of an active particle. The Journal of chemical physics, 150(6), 064906.
dc.identifier0021-9606
dc.identifier1089-7690
dc.identifierhttps://doi.org/10.1063/1.5080807
dc.identifierhttp://repositorio.umayor.cl/xmlui/handle/sibum/6334
dc.identifierDOI: 10.1063/1.5080807
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4454177
dc.description.abstractThe interaction between nano- or micro-sized particles and cell membranes is of crucial importance in many biological and biomedical applications such as drug and gene delivery to cells and tissues. During their cellular uptake, the particles can pass through cell membranes via passive endocytosis or by active penetration to reach a target cellular compartment or organelle. In this manuscript, we develop a simple model to describe the interaction of a self-driven spherical particle (moving through an effective constant active force) with a minimal membrane system, allowing for both penetration and trapping. We numerically calculate the state diagram of this system, the membrane shape, and its dynamics. In this context, we show that the active particle may either get trapped near the membrane or penetrate through it, where the membrane can either be permanently destroyed or recover its initial shape by self-healing. Additionally, we systematically derive a continuum description allowing us to accurately predict most of our results analytically. This analytical theory helps in identifying the generic aspects of our model, suggesting that most of its ingredients should apply to a broad range of membranes, from simple model systems composed of magnetic microparticles to lipid bilayers. Our results might be useful to predict the mechanical properties of synthetic minimal membranes.
dc.languageen
dc.publisherAMER INST PHYSICS
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJ. Chem. Phys., FEB, 2019. 150(6)
dc.subjectChemistry, Physical; Physics, Atomic, Molecular & Chemical
dc.titleMembrane penetration and trapping of an active particle
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución