dc.creatorMartín, Alberto J. M. [Univ Mayor, Fac Ciencias, Ctr Genom & Bioinformat, Santiago, Chile]
dc.creatorPérez-Acle, Tomás
dc.creatorFuenzalida, Ignacio
dc.creatorSantibañez, Rodrigo
dc.creatorAvaria, Rodrigo
dc.creatorBernardin, Alejandro
dc.creatorBustos, Alvaro M.
dc.creatorGarrido, Daniel
dc.creatorDushoff, Jonathan
dc.creatorLiu, James H.
dc.date.accessioned2020-04-08T14:11:55Z
dc.date.accessioned2020-04-13T18:12:45Z
dc.date.accessioned2022-10-18T18:40:56Z
dc.date.available2020-04-08T14:11:55Z
dc.date.available2020-04-13T18:12:45Z
dc.date.available2022-10-18T18:40:56Z
dc.date.created2020-04-08T14:11:55Z
dc.date.created2020-04-13T18:12:45Z
dc.date.issued2018
dc.identifierPerez-Acle, T., Fuenzalida, I., Martin, A. J., Santibañez, R., Avaria, R., Bernardin, A., ... & Liu, J. H. (2018). Stochastic simulation of multiscale complex systems with PISKaS: A rule-based approach. Biochemical and biophysical research communications, 498(2), 342-351.
dc.identifier0006-291X
dc.identifier1090-2104
dc.identifierhttps://doi.org/10.1016/j.bbrc.2017.11.138
dc.identifierhttp://repositorio.umayor.cl/xmlui/handle/sibum/6203
dc.identifierDOI: 10.1016/j.bbrc.2017.11.138
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4454046
dc.description.abstractComputational simulation is a widely employed methodology to study the dynamic behavior of complex systems. Although common approaches are based either on ordinary differential equations or stochastic differential equations, these techniques make several assumptions which, when it comes to biological processes, could often lead to unrealistic models. Among others, model approaches based on differential equations entangle kinetics and causality, failing when complexity increases, separating knowledge from models, and assuming that the average behavior of the population encompasses any individual deviation. To overcome these limitations, simulations based on the Stochastic Simulation Algorithm (SSA) appear as a suitable approach to model complex biological systems. In this work, we review three different models executed in PISKaS: a rule-based framework to produce multiscale stochastic simulations of complex systems. These models span multiple time and spatial scales ranging from gene regulation up to Game Theory. In the first example, we describe a model of the core regulatory network of gene expression in Escherichia coli highlighting the continuous model improvement capacities of PISKaS. The second example describes a hypothetical outbreak of the Ebola virus occurring in a compartmentalized environment resembling cities and highways. Finally, in the last example, we illustrate a stochastic model for the prisoner's dilemma; a common approach from social sciences describing complex interactions involving trust within human populations. As whole, these models demonstrate the capabilities of PISKaS providing fertile scenarios where to explore the dynamics of complex systems. (C) 2017 The Authors. Published by Elsevier Inc.
dc.languageen
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceBiochem. Biophys. Res. Commun., MAR 2018. 498(2): p. 342-351
dc.subjectBiochemistry & Molecular Biology; Biophysics
dc.titleStochastic simulation of multiscale complex systems with PISKaS: A rule-based approach
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución