dc.creatorGómez, Sergio Alejandro
dc.creatorChesñevar, Carlos Iván
dc.date2003-10
dc.date2003-10
dc.date2012-10-22T12:26:31Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/22714
dc.descriptionClustering techniques can be used as a basis for classification systems in which clusters can be classified into two categories: positive and negative. Given a new instance enew, the classification algorithm is applied to determine to which cluster ci it belongs and the label of the cluster is checked. In such a setting clusters can overlap, and a new instance (or example) can be assigned to more than one cluster. In many cases, determining to which cluster this new instance actually belongs requires a qualitative analysis rather than a numerical one. In this paper we present a novel approach to solve this problem by combining defeasible argumentation and a clustering algorithm based on the Fuzzy Adaptive Resonance Theory neural network model. The proposed approach takes as input a clustering algorithm and a background theory. Given a previously unseen instance enew, it will be classified using the clustering algorithm. If a conflicting situation arises, argumentation will be used in order to consider the user’s preference criteria for classifying examples.
dc.descriptionEje: Agentes y Sistemas Inteligentes (ASI)
dc.descriptionRed de Universidades con Carreras en Informática (RedUNCI)
dc.formatapplication/pdf
dc.format601-612
dc.languageen
dc.relationIX Congreso Argentino de Ciencias de la Computación
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.subjectCiencias Informáticas
dc.titleCombining argumentation and clustering techniques in pattern classification problems
dc.typeObjeto de conferencia
dc.typeObjeto de conferencia


Este ítem pertenece a la siguiente institución