dc.creatorAmore, Paolo
dc.creatorFernández, Francisco Marcelo
dc.date.accessioned2020-03-18T19:09:56Z
dc.date.accessioned2022-10-15T12:40:47Z
dc.date.available2020-03-18T19:09:56Z
dc.date.available2022-10-15T12:40:47Z
dc.date.created2020-03-18T19:09:56Z
dc.date.issued2018-09
dc.identifierAmore, Paolo; Fernández, Francisco Marcelo; On the application of the Lindstedt–Poincaré method to the Lotka–Volterra system; Academic Press Inc Elsevier Science; Annals of Physics (New York); 396; 9-2018; 293-303
dc.identifier0003-4916
dc.identifierhttp://hdl.handle.net/11336/100096
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4387186
dc.description.abstractWe apply the Lindstedt–Poincaré method to the Lotka–Volterra model and discuss alternative implementations of the approach. By means of an efficient systematic algorithm we obtain an unprecedented number of perturbation corrections for the two dynamical variables and the frequency. They enable us to estimate the radius of convergence of the perturbation series for the frequency as a function of the only model parameter. The method is suitable for the treatment of systems with any number of dynamical variables.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aop.2018.05.019
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0003491618301556
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCONVERGENCE RADIUS
dc.subjectLARGE ORDER PERTURBATION THEORY
dc.subjectLINDSTEDT–POINCARÉ METHOD
dc.subjectLOTKA–VOLTERRA SYSTEM
dc.subjectSYSTEMATIC METHOD
dc.titleOn the application of the Lindstedt–Poincaré method to the Lotka–Volterra system
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución