dc.creatorAbad, Manuel
dc.creatorCimadamore, Cecilia Rossana
dc.creatorDíaz Varela, José Patricio
dc.date.accessioned2019-07-31T15:04:14Z
dc.date.accessioned2022-10-15T12:03:55Z
dc.date.available2019-07-31T15:04:14Z
dc.date.available2022-10-15T12:03:55Z
dc.date.created2019-07-31T15:04:14Z
dc.date.issued2009-01-17
dc.identifierAbad, Manuel; Cimadamore, Cecilia Rossana; Díaz Varela, José Patricio; Topological representation for monadic implication algebras; De Gruyter; Central European Journal of Mathematics - (Online); 7; 2; 17-1-2009; 299-309
dc.identifier1895-1074
dc.identifierhttp://hdl.handle.net/11336/80664
dc.identifier1644-3616
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4383900
dc.description.abstractIn this paper, every monadic implication algebra is represented as a union of a unique family of monadic filters of a suitable monadic Boolean algebra. Inspired by this representation, we introduce the notion of a monadic implication space, we give a topological representation for monadic implication algebras and we prove a dual equivalence between the category of monadic implication algebras and the category of monadic implication spaces.
dc.languageeng
dc.publisherDe Gruyter
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2478/s11533-009-0002-y
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/math.2009.7.issue-2/s11533-009-0002-y/s11533-009-0002-y.xml
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDUAL CATEGORICAL EQUIVALENCE
dc.subjectIMPLICATION ALGEBRA
dc.subjectIMPLICATION SPACES
dc.subjectMONADIC BOOLEAN ALGEBRA
dc.titleTopological representation for monadic implication algebras
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución