dc.creatorMuro, Luis Santiago Miguel
dc.creatorPinasco, Damian
dc.creatorSavransky, Martin
dc.date.accessioned2019-09-25T19:16:15Z
dc.date.accessioned2022-10-15T10:45:42Z
dc.date.available2019-09-25T19:16:15Z
dc.date.available2022-10-15T10:45:42Z
dc.date.created2019-09-25T19:16:15Z
dc.date.issued2014-11
dc.identifierMuro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin; Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 80; 4; 11-2014; 453-468
dc.identifier0378-620X
dc.identifierhttp://hdl.handle.net/11336/84445
dc.identifier1420-8989
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4377149
dc.description.abstractA theorem of Godefroy and Shapiro states that non-trivial convolution operators on the space of entire functions on (Formula Presented.) are hypercyclic. Moreover, it was shown by Bonilla and Grosse-Erdmann that they have frequently hypercyclic functions of exponential growth. On the other hand, in the infinite dimensional setting, the Godefroy–Shapiro theorem has been extended to several spaces of entire functions defined on Banach spaces. We prove that on all these spaces, non-trivial convolution operators are strongly mixing with respect to a gaussian probability measure of full support. For the proof we combine the results previously mentioned and we use techniques recently developed by Bayart and Matheron. We also obtain the existence of frequently hypercyclic entire functions of exponential growth.
dc.languageeng
dc.publisherBirkhauser Verlag Ag
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00020-014-2182-5
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00020-014-2182-5
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.7671
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCONVOLUTION OPERATORS
dc.subjectFREQUENTLY HYPERCYCLIC OPERATORS
dc.subjectHOLOMORPHY TYPES
dc.subjectSTRONGLY MIXING OPERATORS
dc.titleStrongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución