dc.creator | Berger, Thomas | |
dc.creator | Giribet, Juan Ignacio | |
dc.creator | Martinez Peria, Francisco Dardo | |
dc.creator | Trunk, Carsten Joachim | |
dc.date.accessioned | 2020-06-17T20:01:15Z | |
dc.date.accessioned | 2022-10-15T08:07:54Z | |
dc.date.available | 2020-06-17T20:01:15Z | |
dc.date.available | 2022-10-15T08:07:54Z | |
dc.date.created | 2020-06-17T20:01:15Z | |
dc.date.issued | 2019-03 | |
dc.identifier | Berger, Thomas; Giribet, Juan Ignacio; Martinez Peria, Francisco Dardo; Trunk, Carsten Joachim; On a class of non-Hermitian matrices with positive definite Schur complements; American Mathematical Society; Proceedings of the American Mathematical Society; 147; 6; 3-2019; 2375-2388 | |
dc.identifier | 0002-9939 | |
dc.identifier | http://hdl.handle.net/11336/107578 | |
dc.identifier | 1088-6826 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4363560 | |
dc.description.abstract | Given a Hermitian matrices A∈C^n×n and D∈C^m×m, and k > 0, we characterize under which conditions there exists a matrix K∈C^n×m with ∥K∥ < k such that the non-Hermitian block-matrix [AK∗A−AKD] has a positive (semi-) definite Schur complement with respect to its submatrix A. Additionally, we show that K can be chosen such that diagonalizability of the block-matrix is guaranteed and we compute its spectrum. Moreover, we show a connection to the recently developed frame theory for Krein spaces. | |
dc.language | eng | |
dc.publisher | American Mathematical Society | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2019-147-06/S0002-9939-2019-14412-9/ | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/ 10.1090/proc/14412 | |
dc.relation | info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1807.08591 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | FRAMES | |
dc.subject | KREIN SPACES | |
dc.subject | COMPLEMENTO DE SCHUR | |
dc.subject | OPERATOR DE CORTO-CIRCUITO | |
dc.title | On a class of non-Hermitian matrices with positive definite Schur complements | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |