dc.creatorBerger, Thomas
dc.creatorGiribet, Juan Ignacio
dc.creatorMartinez Peria, Francisco Dardo
dc.creatorTrunk, Carsten Joachim
dc.date.accessioned2020-06-17T20:01:15Z
dc.date.accessioned2022-10-15T08:07:54Z
dc.date.available2020-06-17T20:01:15Z
dc.date.available2022-10-15T08:07:54Z
dc.date.created2020-06-17T20:01:15Z
dc.date.issued2019-03
dc.identifierBerger, Thomas; Giribet, Juan Ignacio; Martinez Peria, Francisco Dardo; Trunk, Carsten Joachim; On a class of non-Hermitian matrices with positive definite Schur complements; American Mathematical Society; Proceedings of the American Mathematical Society; 147; 6; 3-2019; 2375-2388
dc.identifier0002-9939
dc.identifierhttp://hdl.handle.net/11336/107578
dc.identifier1088-6826
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4363560
dc.description.abstractGiven a Hermitian matrices A∈C^n×n and D∈C^m×m, and k > 0, we characterize under which conditions there exists a matrix K∈C^n×m with ∥K∥ < k such that the non-Hermitian block-matrix [AK∗A−AKD] has a positive (semi-) definite Schur complement with respect to its submatrix A. Additionally, we show that K can be chosen such that diagonalizability of the block-matrix is guaranteed and we compute its spectrum. Moreover, we show a connection to the recently developed frame theory for Krein spaces.
dc.languageeng
dc.publisherAmerican Mathematical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2019-147-06/S0002-9939-2019-14412-9/
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/ 10.1090/proc/14412
dc.relationinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1807.08591
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectFRAMES
dc.subjectKREIN SPACES
dc.subjectCOMPLEMENTO DE SCHUR
dc.subjectOPERATOR DE CORTO-CIRCUITO
dc.titleOn a class of non-Hermitian matrices with positive definite Schur complements
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución