dc.creatorCano, Cristina
dc.creatorMosconi, Irene
dc.creatorStojanoff, Demetrio
dc.date.accessioned2020-06-05T19:15:26Z
dc.date.accessioned2022-10-15T02:19:36Z
dc.date.available2020-06-05T19:15:26Z
dc.date.available2022-10-15T02:19:36Z
dc.date.created2020-06-05T19:15:26Z
dc.date.issued2005-12
dc.identifierCano, Cristina; Mosconi, Irene; Stojanoff, Demetrio; Some operator inequalities for unitary invariant norms; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 46; 2; 12-2005; 53-66
dc.identifier0041-6932
dc.identifierhttp://hdl.handle.net/11336/106776
dc.identifier1669-9637
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4334418
dc.description.abstractLet L(H) be the algebra of bounded operators on a complex separable Hilbert space H.  Let N be a unitary invariant norm  defined on a norm ideal I ⊆ L(H)$. Given two positive invertible operators P, Q ∈ L(H) and k ∈ (-2,2], we show that N(PTQ^{-1} +P^{-1}TQ + kT) (2+k) N(T), T ∈ I. This extends Zhang's inequality for matrices. We prove that this inequality is equivalent to two particular cases of  itself, namely P=Q and Q=P^{-1}. We also characterize  those numbers k such that the map  ϒ : L(H)→ L(H) given by ϒ (T) = PTQ^{-1} +P^{-1}TQ + kT is invertible, and we estimate the induced norm of ϒ^{-1}  acting on the norm ideal I. We compute sharp constants for the involved inequalities in several particular cases.
dc.languageeng
dc.publisherUnión Matemática Argentina
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol46
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/pdf/v46n1/v46n1a06.pdf
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectPOSITIVE MATRICES
dc.subjectINEQUALITIES
dc.subjectUNITARILY INVARIANT NORM
dc.titleSome operator inequalities for unitary invariant norms
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución