dc.creatorChum, Jaroslav
dc.creatorUrbár, Jaroslav
dc.creatorLastovicka, Jan
dc.creatorCabrera, Miguel Angel
dc.creatorLiu, Jann-Yenq
dc.creatorMiranda Bonomi, Fernando Alberto
dc.creatorFagre, Mariano
dc.creatorFiser, Jirí
dc.creatorMosna, Zbysek
dc.date.accessioned2019-08-07T14:54:50Z
dc.date.accessioned2022-10-15T01:15:37Z
dc.date.available2019-08-07T14:54:50Z
dc.date.available2022-10-15T01:15:37Z
dc.date.created2019-08-07T14:54:50Z
dc.date.issued2018-12
dc.identifierChum, Jaroslav; Urbár, Jaroslav; Lastovicka, Jan; Cabrera, Miguel Angel; Liu, Jann-Yenq; et al.; Continuous Doppler sounding of the ionosphere during solar flares; Terra Scientific Publishing; Earth Planets And Space; 70; 1; 12-2018
dc.identifier1343-8832
dc.identifierhttp://hdl.handle.net/11336/81067
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4328931
dc.description.abstractSolar flares cause a rapid increase in ionization in the ionosphere owing to significant enhancement of ionizing solar radiation in the X-ray and extreme ultraviolet (EUV) spectral ranges. The change of electron densities in the ionosphere influences the propagation of radio waves. The ionospheric response to solar flares is investigated for three selected examples recorded during the maximum and decreasing phase of the solar cycle 24 with time resolution of several seconds by continuous Doppler sounding systems installed in the Czech Republic (50N, 14E), Taiwan (24N, 121E) and Northern Argentina (27S, 65W). The reflection heights of sounding signals are derived from nearby ionospheric sounders. The measured Doppler shifts are compared with EUV and X-ray data from the GOES-15 satellite. It is shown that the largest Doppler shifts are observed at times when the time derivatives of EUV fluxes are maximal, while the Doppler shifts are around zero at times when the EUV fluxes reach maxima. This means that loss processes balance the ionization when the EUV fluxes maximize. The attenuation of Doppler signal caused by enhanced electron density in the D and E layer was well correlated with the cosmic noise absorption measured by riometer. For large ionizing fluxes, the attenuation leads to very low signal-to-noise ratio, loss of the received signal, and inability to process both Doppler shift spectrograms and ionograms.
dc.languageeng
dc.publisherTerra Scientific Publishing
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1186/s40623-018-0976-4
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://earth-planets-space.springeropen.com/articles/10.1186/s40623-018-0976-4
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectHF DOPPLER SOUNDING
dc.subjectIONOSPHERE
dc.subjectRADIO WAVES
dc.subjectSOLAR FLARES
dc.titleContinuous Doppler sounding of the ionosphere during solar flares
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución