dc.contributorUniversidad Torcuato Di Tella
dc.creatorFrancetich, Alejandro
dc.date.accessioned2017-04-03T15:53:52Z
dc.date.accessioned2022-10-14T19:36:02Z
dc.date.available2017-04-03T15:53:52Z
dc.date.available2022-10-14T19:36:02Z
dc.date.created2017-04-03T15:53:52Z
dc.date.issued2011
dc.identifierhttp://repositorio.utdt.edu/handle/utdt/1338
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4286952
dc.description.abstractMany problems in decision theory and game theory involve choice problems over lattices and invoke the assumption of supermodularity of utility functions. In the context of choice over finite lattices, it is well-known that existence of supermodular representations is equivalent to existence of quasisupermodular ones for monotone preferences. In particular, strictly monotone preferences admit a supermodular representation. This paper revisits the axiomatic foundations of supermodularity of utility functions representing preferences over finite lattices, and develops an axiomatic foundation in the context of choice over lotteries over outcomes in arbitrary lattices.
dc.publisherUniversidad Torcuato Di Tella
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectEconomía
dc.subjectTeoría de juegos
dc.subjectGame theory
dc.subjectTesis
dc.titleSupermodular utility representations
dc.typeinfo:eu-repo/semantics/masterThesis


Este ítem pertenece a la siguiente institución