Artículos de revistas
Determination of the Immunoglobulin G Spectrum by Surface-Enhanced Raman Spectroscopy Using Quasispherical Gold Nanoparticles
Fecha
2021-01-19Registro en:
1687-4110
1687-4129
Autor
Ortiz Dosal, Alejandra
Loredo García, Elizabeth
Álvarez Contreras, Ana Gabriela
Núñez Leyva, Juan Manuel
Ortiz Dosal, Luis Carlos
Kolosovas Machuca, Eleazar Samuel
Institución
Resumen
Background. Immunoglobulins (Ig) are glycoprotein molecules produced by plasma cells in response to antigenic stimuli involved in various physiological and pathological conditions. Intravenous immunoglobulin (IVIG) is a compound whose composition corresponds to Ig concentrations in human plasma, predominantly IgG. It is used as a replacement treatment in immunodeficiencies and as an immunomodulator in inflammatory and autoimmune diseases. The determination of IgG concentrations is useful in the diagnosis of these immunodeficiencies. Surface-enhanced Raman spectroscopy (SERS) is a technique that allows protein quantification in a fast and straightforward way. Objective. This study is aimed at determining the Raman spectrum of IgG at physiological concentrations using quasispherical gold nanoparticles as a SERS substrate. Methods. We initially determined the Raman spectrum of IVIG at 5%. Subsequently, for SERS’ characterization, decreasing dilutions of the protein were made by adding deionized water and an equal volume of the 5 nm gold quasispherical nanoparticle colloid. For each protein concentration, the Raman spectrum was determined using a 10x objective; we focused the 532 and 785 nm laser on the sample surface, in a range of 500-1800 cm-1, with five acquisitions and an acquisition time of 30 seconds. Results. We obtained the IVIG spectrum using SERS up to a concentration of 75 mg/dl. The Raman bands correspond to aromatic amino acid side chains and the characteristic beta-sheet structure of IgG. Conclusion. The use of 5 nm quasispherical gold nanoparticles as a SERS substrate allows for detecting the Raman spectrum of IVIG at physiological concentrations.