dc.creatorGutiérrez, Osvaldo
dc.creatorDe la Rosa Vargas, José Ismael
dc.creatorVilla Hernández, José de Jesús
dc.creatorEscalante, Nivia
dc.date.accessioned2020-05-05T18:46:12Z
dc.date.accessioned2022-10-14T15:14:11Z
dc.date.available2020-05-05T18:46:12Z
dc.date.available2022-10-14T15:14:11Z
dc.date.created2020-05-05T18:46:12Z
dc.date.issued2012-11
dc.identifier978-607-95476-6-0
dc.identifierhttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1871
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4247444
dc.description.abstractIn this work we introduce a new approach for robust image segmentation. The idea is to combine two strategies within a Bayesian framework. The first one is to use a Márkov Random Field (MRF), which allows to introduce prior information with the purpose of preserve the edges in the image. The second strategy comes from the fact that the probability density function (pdf) of the likelihood function is non Gaussian or unknown, so it should be approximated by an estimated version, and for this, it is used the classical non-parametric or kernel density estimation. This two strategies together lead us to the definition of a new maximum a posteriori (MAP) estimator based on the minimization of the entropy of the estimated pdf of the likelihood function and the MRF at the same time, named MAP entropy estimator (MAPEE). Some experiments were made for different kind of images degraded with impulsive noise and the segmentation results are very satisfactory and promising.
dc.languageeng
dc.publisherROPEC
dc.publisherIEEE
dc.relationgeneralPublic
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.sourceProc. de la XIV Reunión de Otoño de Potencia, Electrónica y Computación, ROPEC 2012 INTERNACIONAL, Vol. 1, pp.387-392, Colima, Colima, Nov. 2012.
dc.titleNew approach of entropy estimation for robust image segmentation
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución