dc.contributorhttps://orcid.org/0000-0002-7337-8974
dc.contributorhttps://orcid.org/0000-0003-1519-7718
dc.creatorDuarte Correa, David
dc.creatorPastrana Palma, Alberto
dc.creatorOlvera Olvera, Carlos Alberto
dc.creatorRamírez Rodríguez, Sergio
dc.creatorAlaniz Lumbreras, Daniel
dc.creatorGómez Meléndez, Domingo
dc.creatorDe la Rosa Vargas, José Ismael
dc.creatorNoriega, Salvador
dc.creatorTorres, Vianey
dc.creatorCastaño, Víctor
dc.date.accessioned2020-04-16T18:18:20Z
dc.date.available2020-04-16T18:18:20Z
dc.date.created2020-04-16T18:18:20Z
dc.date.issued2013-11
dc.identifier0030-4026
dc.identifierhttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1706
dc.identifierhttps://doi.org/10.48779/kt7v-4k60
dc.description.abstractThe computational efficiency of 14 optical detectors over six types of transformations, namely: blur, illumination, rotation, viewpoint, zoom, and zoom-rotation changes, was analyzed. Images with the same resolution (750×500 pixels) were studied, in terms of correspondences, repeatability and computing time, and the correspondence was measured by using homographies i.e. projective transformations, to obtain the best efficiency for imaging applications. Results show that the multi-scale Harris Hessian detector is the most efficient for blur, illumination, and zoom-rotation changes. Meanwhile, multi-scale Hessian and Hessian Laplace are the best methods for rotation, viewpoint, and zoom changes.
dc.languageeng
dc.publisherElsevier
dc.relationgeneralPublic
dc.relationhttps://doi.org/10.1016/j.ijleo.2013.01.116
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.sourceOptik, Vol. 124, No. 21, noviembre de 2013, pp. 4685-4692
dc.titleEfficient numerical analysis of optical imaging data: A comparative study
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución