dc.creatorGutiérrez, Osvaldo
dc.creatorDe la Rosa Vargas, José Ismael
dc.creatorVilla Hernández, José Ismael
dc.creatorGonzález, Efrén
dc.creatorEscalante, Nivia
dc.date.accessioned2020-05-05T18:40:24Z
dc.date.accessioned2022-10-14T15:13:13Z
dc.date.available2020-05-05T18:40:24Z
dc.date.available2022-10-14T15:13:13Z
dc.date.created2020-05-05T18:40:24Z
dc.date.issued2012-10
dc.identifierhttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1869
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4246920
dc.description.abstractWe introduce a new approach for robust image segmentation combining two strategies within a Bayesian framework. The first one is to use a Markov random field (MRF) which allows to introduce prior information with the purpose of image edges preservation. The second strategy comes from the fact that the probability density function (pdf) of the likelihood function is non-Gaussian or unknown, so it should be approximated by an estimated version, which is obtained by using the classical non-parametric or kernel density estimation. This lead us to the definition of a new maximum a posteriori (MAP) estimator based on the minimization of the entropy of the estimated pdf of the likelihood function and the MRF at the same time, named MAP entropy estimator (MAPEE). Some experiments were made for different kind of images degraded with impulsive noise (salt & pepper) and the segmentation results are very satisfactory and promising.
dc.languageeng
dc.publisherCentro de Investigación en Matemáticas, A.C.
dc.relationgeneralPublic
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.sourceIX Taller-Escuela de Procesamiento de Imágenes - CIMAT, Guanajuato, Guanajuato, Octubre de 2012 (Memorias en CD).
dc.titleBayesian entropy estimation applied to non-gaussian robust image segmentation
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución