dc.creatorGUSTAVO ARROYO FIGUEROA
dc.creatorLUIS ENRIQUE SUCAR SUCCAR
dc.date2013-06-23
dc.date.accessioned2022-10-12T20:15:59Z
dc.date.available2022-10-12T20:15:59Z
dc.identifierhttp://repositorio.ineel.mx/jspui/handle/123456789/311
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4130735
dc.descriptionDiagnosis and prediction m some domains, like medical and industrial diagnosis, require a representation that combines uncertainty management and temporal reasoning. Based on the fact that in many cases there are few state changes in the temporal range of interest, we propose a novel representation called Temporal Nodes Bayesian Network (TNBN). In a TNBN each node represents an event or state change of a variable, and an arc corresponds to a causal-temporal relation. The temporal intervals can differ in number and size for each temporal node, so this allows multiple granularity. Our approach is contrasted with a dynamic Bayesian network for a simple medical example. An empirical evaluation is presented for a more complex problem, a subsystem of a fossil power plant, in which this approach is used for fault diagnosis and event prediction with good results.
dc.formatapplication/pdf
dc.languageeng
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0
dc.subjectinfo:eu-repo/classification/cti/7
dc.subjectinfo:eu-repo/classification/cti/33
dc.subjectinfo:eu-repo/classification/cti/3304
dc.subjectinfo:eu-repo/classification/cti/120307
dc.titleA temporal bayesian network for diagnosis and prediction
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución