dc.contributorLibardi, Cleiton Augusto
dc.contributorhttp://lattes.cnpq.br/8953409094842074
dc.contributorhttp://lattes.cnpq.br/5086441110418562
dc.creatorSilva, Deivid Gomes da
dc.date.accessioned2022-04-07T19:53:59Z
dc.date.accessioned2022-10-10T21:39:24Z
dc.date.available2022-04-07T19:53:59Z
dc.date.available2022-10-10T21:39:24Z
dc.date.created2022-04-07T19:53:59Z
dc.date.issued2022-03-09
dc.identifierSILVA, Deivid Gomes da. Utilização de visão computacional para a reconstrução automatizada da área de secção transversa muscular a partir de imagens sequenciais obtidas por ultrassonografia. 2022. Dissertação (Mestrado em Ciências Fisiológicas) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15827.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/15827
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4045872
dc.description.abstractThe aim of the present study was to propose and validate a tool based on computer vision techniques that allows for the automated reconstruction (AR) of the vastus lateralis (VL) muscular cross-sectional area (MCSA) from sequential images obtained using an ultrasound (US) machine. Methods: Four hundred and eighty-eight VL US image sequences were used for VL MCSA reconstruction. Two different reconstruction techniques were utilized. For the already validated manual reconstruction (MR) technique, the sequential images were manually adjusted until the MCSA of the VL was fully visible for each image sequence. For AR, computer vision techniques were combined in a tool capable of automatically reconstructing the MCSA of the VL based on the steps described for the proper application of MR. After the quantification in cm² of all VL MCSA by both MR (n = 488) and AR (n = 488) techniques, the results were used to investigate the validity of the AR in measuring VL MCSA from of sequential images of the VL obtained by US. Our findings demonstrated good validity with low coefficient of variation values (1.51%) for AR compared to MR. The Bland-Altman plot showed low bias (-0.01 cm²; IC95% = 0.04, -0.06) and close limits of agreement (+1.18 cm², -1.19 cm²) containing 95% of the comparisons. Conclusion: The AR technique is valid compared to MR when measuring VL MCSA in a heterogeneous sample.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Ciências Fisiológicas - PIPGCF
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectInteligência artificial
dc.subjectMúsculo esquelético
dc.subjectAutomatização
dc.subjectReconstrução manual
dc.subjectArtificial intelligence
dc.subjectSkeletal muscle
dc.subjectAutomation
dc.subjectManual reconstruction
dc.titleUtilização de visão computacional para a reconstrução automatizada da área de secção transversa muscular a partir de imagens sequenciais obtidas por ultrassonografia
dc.typeTesis


Este ítem pertenece a la siguiente institución